ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:315.44KB ,
资源ID:115018      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115018.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.2.3 从图象看函数的性质 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.2.3 从图象看函数的性质 学案(含答案)

1、1.2.3从图象看函数的性质学习目标1.能从函数的图象上看出函数的性质,如最值、有界性、单调性、奇偶性等.2.掌握正比例函数、一次函数、反比例函数的性质知识链接1正比例函数ykx(k0)的图象是一条直线,它经过原点2一次函数ykxb(k0),当k0时,随着x的增大,y增大3反比例函数y的图象为:预习导引1奇函数和偶函数(1)奇函数:如果函数的图象关于原点中心对称也就是说,绕原点旋转180后和自己重合这样的函数被说成是奇函数(2)偶函数:如果一个函数的图象是以y轴为对称轴的轴对称图形,这个函数被说成是偶函数2单调函数(1)单调递增函数:函数值y随自变量x的增大而增大,这样的函数叫作单调递增函数;

2、(2)单调递减函数:函数值y随自变量x的增大而减小,这样的函数叫作单调递减函数;(3)单调递增、单调递减简称为递增或递减,递增函数和递减函数统称为单调函数3函数的最值与上、下界(1)股票指数走势图中,一般会标明最高和最低指数,以及达到最高和最低指数的时间前者分别叫作函数的最大值和最小值,后者分别叫作函数的最大值点和最小值点最大值和最小值统称为最值(2)图象向上方和下方无限伸展,这样的函数叫作无上界也无下界的函数.题型一奇函数与偶函数问题例1下面给出了一些函数的图象,根据图象说明哪些是奇函数?哪些是偶函数?解从图象可以发现,(1)(4)两个函数图象关于y轴对称,对应的函数是偶函数;(2)(3)两

3、个函数图象关于原点成中心对称,对应的函数是奇函数规律方法判断函数的奇偶性主要根据图象的对称性来鉴别偶函数的图象关于y轴对称,奇函数的图象关于原点成中心对称跟踪演练1(1)如图是根据yf(x)绘出来的,则表示偶函数的图象是图中的_(把正确命题的序号都填上)(2)函数f(x)(x(2,0)是()A奇函数B偶函数C既是奇函数又是偶函数D既不是奇函数也不是偶函数答案(1)(2)D解析(1)只有中的图象是关于y轴对称的,故表示偶函数的只有.(2)画出函数f(x)(x(2,0)的图象(如图),可知图象既不关于原点对称,也不关于y轴对称,故该函数既不是奇函数也不是偶函数题型二函数的单调性例2(1)一天,亮亮

4、发烧了,早晨烧得很厉害,吃过药后,感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么发烫了下面各图能基本上反映出亮亮这一天(024时)体温的变化情况的是()(2)如图,是一个函数f(x)在y轴左侧的图象当f(x)是奇函数时,画出该函数在y轴右侧的图象,并说明该函数在(0,)上是增函数还是减函数?当f(x)是偶函数时,该函数在y轴右侧的图象必经过哪个点?(1)答案C解析依题意知只有C选项最符合条件,故选C.(2)解f(x)在y轴右侧图象如图,它在(0,)上是单调减函数;f(x)在y轴右侧的图象必经过点(2,0)规律方法1.看函数的单调性主要是看在定义域

5、中函数是否随自变量的增加而增加,若是,就是单调递增,反之则单调递减2一个奇函数在y轴两侧的增减性相同,一个偶函数在y轴两侧的增减性相反3若已知奇函数f(x)的图象经过点(a,b),则它一定也经过点(a,b);若已知偶函数f(x)的图象经过点(a,b),则它一定也经过点(a,b)跟踪演练2(1)若函数f(x)的图象如图,则f(x)在区间_上是单调递增函数,在区间_上是单调递减函数(2)从山顶到山下的招待所的距离为20千米某人从山顶以4千米/时的速度到山下的招待所,他与招待所的距离s(千米)与时间t(时)的关系用图象表示为()答案(1)2,1,3,55,2,1,3(2)C解析(2)该人与招待所的距

6、离随着时间增加而减少,故只有C,D符合这一条件又0s20,故选C.题型三函数的最值例3给出函数的图象如图所示,则该函数的最大值和最小值分别是多少?该函数有上界吗?有下界吗?解观察图象可知图象的最高点的函数值为2,但该点无意义,最低点的函数值为0.故函数无最大值,最小值是0.从图象可知,该函数既有上界,也有下界规律方法1.最高点对应的是最大值,最低点对应的是最小值在看这两个点时要注意在该点自变量是否有意义,如果x在该点不能取值,那么即使是图象的最高点和最低点也不是最值2如果一个函数的图象上不封顶、向上方无限延伸,就称该函数无上界,否则有上界;如果一个函数的图象下不保底,向下方无限延伸,就称其无下

7、界,否则有下界跟踪演练3给出函数的图象如图所示,则该函数的最大值和最小值分别是多少?该函数有上界吗?有下界吗?解最大值是2,没有最小值该函数既有上界,也有下界.课堂达标1函数f(x)3x是()A奇函数B偶函数C既是奇函数又是偶函数D既不是奇函数也不是偶函数答案A解析画出y3x的图象(图略),观察图象知其关于原点中心对称,所以它是奇函数,选A.2函数f(x)x2在区间(1,)上()A是增函数B是减函数C不具有单调性D无法判断单调性答案C解析画出f(x)x2的图象(图略),观察可知它在(1,)上先单调递增后单调递减,不具有单调性,选C.3下图的四个函数图象中奇函数的个数为()A1B2C3D4答案B

8、解析从图中可以看出(2)(4)两个图象关于原点成中心对称,故有两个奇函数4已知函数f(x)的图象如图所示,则以下说法正确的是()A函数有最大值,无最小值B函数无最大值,有最小值C函数有上界,无下界D函数无上界,无下界答案D5已知yf(x)的图象如下图(包括端点),则函数的单调递增区间为_答案1,0),1,2课堂小结1.一次函数定义:ykxb(k0),不要漏掉条件k0.当b0时,此函数为正比例函数,它是一次函数的特例2一次函数的性质:k0时,ykxb单调递增;k0时,ykxb单调递减3函数的图象有着重要的应用,读图、识图作为一种能力在高考中越来越受重视常见的思考方法:定性法、定量法、模型函数法、转化法用图象法要通过图象不仅看出函数的定义域、值域,更要看出图象反映出的其他性质