ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:219.17KB ,
资源ID:115017      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115017.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.3.1 幂函数的概念-2.3.2 幂函数的图象和性质 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2.3.1 幂函数的概念-2.3.2 幂函数的图象和性质 学案(含答案)

1、23幂函数23.1幂函数的概念23.2幂函数的图象和性质学习目标1.了解幂函数的概念,会求幂函数的解析式.2.结合幂函数yx,yx2,yx3,y,y的图象,掌握它们的性质.3.能利用幂函数的单调性比较指数幂的大小知识链接函数yx,yx2,y(x0)的图象和性质函数图象定义域值域单调性奇偶性yxRR递增奇yx2R0,)在(,0)上递减偶在0,)上递增yx|x0y|y0在(,0)上递减奇在(0,)上递减预习导引1幂函数的概念一般来说,当x为自变量而为非0实数时,函数yx叫作(次的)幂函数2幂函数的图象与性质幂函数yxyx2yx3yyx1图象定义域RRR0,)(,0) (0,)值域R0,)R0,)y

2、|yR,且y0奇偶性奇偶奇非奇非偶奇单调性递增x0,)递增;x(,0递减递增递增x(0,)递减;x(,0)递减定点(1,1)题型一幂函数的概念例1函数f(x)(m2m1)xm2m3是幂函数,且当x(0,)时,f(x)是增函数,求f(x)的解析式解根据幂函数定义得,m2m11,解得m2或m1,当m2时,f(x)x3,在(0,)上是增函数,当m1时,f(x)x3,在(0,)上是减函数,不合要求f(x)的解析式为f(x)x3.规律方法1.本题在求解中常因不理解幂函数的概念而找不出“m2m11”这一等量关系,导致解题受阻2幂函数yx(R)中,为常数,系数为1,底数为单一的x.这是判断一个函数是否为幂函

3、数的重要依据和唯一标准幂函数与指数函数的解析式形同而实异,解题时一定要分清,以防出错跟踪演练1已知幂函数f(x)x的图象经过点(9,3),则f(100)_.答案10解析由题意可知f(9)3,即93,f(x),f(100)10.题型二幂函数的图象例2如图所示,图中的曲线是幂函数yxn在第一象限的图象,已知n取2,四个值,则相应于c1,c2,c3,c4的n依次为()A2,2B2,2C,2,2,D2,2,答案B解析考虑幂函数在第一象限内的增减性注意当n0时,对于yxn,n越大,yxn增幅越快,n0时看|n|的大小根据幂函数yxn的性质,在第一象限内的图象当n0时,n越大,yxn递增速度越快,故c1的

4、n2,c2的n,当n0时,|n|越大,曲线越陡峭,所以曲线c3的n,曲线c4的n2,故选B.规律方法幂函数图象的特征:(1)在第一象限内,直线x1的右侧,yx的图象由上到下,指数由大变小;在第一象限内,直线x1的左侧,yx的图象由上到下,指数由小变大(2)当0时,幂函数的图象都经过(0,0)和(1,1)点,在第一象限内,当01时,曲线上凸;当1时,曲线下凸;当0时,幂函数的图象都经过(1,1)点,在第一象限内,曲线下凸跟踪演练2如图是幂函数yxm与yxn在第一象限内的图象,则()A1n0m1Bn1,0m1C1n0,m1Dn1,m1答案B解析在(0,1)内取同一值x0,作直线xx0,与各图象有交

5、点,如图所示根据点低指数大,有0m1,n1.题型三比较幂的大小例3比较下列各组数中两个数的大小:(1)与;(2)1与1;(3)0.25与6.25;(4)0.20.6与0.30.4.解(1)y是0,)上的增函数,且,.(2)yx1是(,0)上的减函数,且,11.(3)0.252,6.252.5.yx是0,)上的增函数,且22.5,22.5,即0.256.25.(4)由幂函数的单调性,知0.20.60.30.6,又y0.3x是减函数,0.30.40.30.6,从而0.20.60.30.4.规律方法1.比较幂值的大小,关键在于构造适当的函数:(1)若指数相同而底数不同,则构造幂函数;(2)若指数不同

6、而底数相同,则构造指数函数2若指数与底数都不同,需考虑是否能把指数或底数化为相同,是否可以引入中间量跟踪演练3比较下列各组数的大小:(1)0.5与0.5;(2)3.143与3;(3)与.解(1)yx0.5在0,)上是增函数且,0.50.5.(2)yx3是R上的增函数,且3.14,3.1433,3.1433.(3)yx是减函数,.y是0,)上的增函数,.课堂达标1下列函数是幂函数的是()Ay5xByx5Cy5xDy(x1)3答案B解析函数y5x是指数函数,不是幂函数;函数y5x是正比例函数,不是幂函数;函数y(x1)3的底数不是自变量x,不是幂函数;函数yx5是幂函数2下列函数中,其定义域和值域

7、不同的函数是()AyByxCyDyx答案D解析yx,其定义域为R,值域为0,),故定义域与值域不同3设,则使函数yx的定义域为R且为奇函数的所有值为()A1,3B1,1C1,3 D1,1,3答案A解析可知当1,1,3时,yx为奇函数,又yx的定义域为R,则1,3.4若a(),b(),c(2)3,则a、b、c的大小关系为_答案abc解析yx在(0,)上为增函数()(),即ab0.而c(2)3230,abc.5幂函数f(x)(m2m1)xm22m3在(0,)上是减函数,则实数m_.答案2解析f(x)(m2m1)xm22m3为幂函数,m2m11,m2或m1.当m2时,f(x)x3在(0,)上是减函数,当m1时,f(x)x01不符合题意综上可知m2.课堂小结1.幂函数yx的底数是自变量,指数是常数,而指数函数正好相反,底数是常数,指数是自变量2幂函数在第一象限内指数变化规律在第一象限内直线x1的右侧,图象从上到下,相应的指数由大变小;在直线x1的左侧,图象从下到上,相应的指数由大变小3简单幂函数的性质(1)所有幂函数在(0,)上都有定义,并且当自变量为1时,函数值为1,即f(1)1.(2)如果0,幂函数在0,)上有意义,且是增函数(3)如果0,幂函数在x0处无意义,在(0,)上是减函数.