ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:220.97KB ,
资源ID:115014      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115014.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.2.2 表示函数的方法 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.2.2 表示函数的方法 学案(含答案)

1、1.2.2表示函数的方法学习目标1.掌握函数的三种表示方法:解析法、图象法、列表法.2.会根据不同的需要选择恰当方法表示函数知识链接1在平面上,两个点可以确定一条直线,因此作一次函数的图象时,只需找到两个点即可2二次函数yax2bxc(a0)的顶点坐标为(,)3函数yx22x3(x1)(x3),所以函数与x轴的交点坐标为(1,0),(3,0)预习导引1表示函数的方法(1)把一个函数的对应法则和定义域交待清楚的办法,就是表示函数的方法;(2)表示函数的三种主要方法分别是:解析法、图象法和列表法2解析法(1)解析式:把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式,也叫作解析

2、表达式或函数关系式(2)解析法就是用解析式来表示函数的方法3图象法函数图象的作图过程通常有列表、描点、连线三个步骤.题型一待定系数法求函数解析式例1(1)已知反比例函数f(x)满足f(3)6,求f(x)的解析式;(2)一次函数yf(x),f(1)1,f(1)3,求f(3)解 (1)设反比例函数f(x)(k0),由f(3)6,解得k18,故f(x).(2)设一次函数f(x)axb(a0),f(1)1,f(1)3,解得f(x)2x1.f(3)2315.规律方法待定系数法求函数解析式的步骤如下:(1)设出所求函数含有待定系数的解析式如一次函数解析式设为f(x)axb(a0),反比例函数解析式设为f(

3、x)(k0),二次函数解析式设为f(x)ax2bxc(a0)(2)把已知条件代入解析式,列出含待定系数的方程或方程组(3)解方程或方程组,得到待定系数的值(4)将所求待定系数的值代回原式跟踪演练1已知二次函数f(x)满足f(0)1,f(1)2,f(2)5,求该二次函数的解析式解设二次函数的解析式为f(x)ax2bxc(a0),由题意得解得故f(x)x21.题型二换元法(或配凑法)求函数解析式例2求下列函数的解析式:(1)已知f,求f(x);(2)已知f(1)x2,求f(x)解 (1)方法一(换元法)令t1,有x.则t1.把x代入f,得f(t)(t1)21(t1)t2t1.所求函数的解析式为f(

4、x)x2x1,(x1)方法二(配凑法)f221,f(x)x2x1.又11,所求函数的解析式为f(x)x2x1(x1)(2)方法一(换元法)令1t(t1),则x(t1)2,f(t)(t1)22t21.f(x)x21(x1)方法二(配凑法)x2(1)21,f(1)(1)21.又11,f(x)x21(x1)规律方法1.换元法的应用:当不知函数类型求函数解析式时,一般可采用换元法所谓换元法,即将“1”换成另一个字母“t”,然后从中解出x与t的关系,再代入原式中求出关于“t”的函数关系式,即为所求函数解析式,但要注意换元前后自变量取值范围的变化情况2配凑法的应用:对于配凑法,通过观察与分析,将右端的式子

5、“x2”变成含有“1”的表达式这种解法对变形能力、观察能力有较高的要求跟踪演练2已知函数f(x1)x22x,则f(x)_.答案x24x3解析方法一(换元法)令x1t,则xt1,可得f(t)(t1)22(t1)t24t3,即f(x)x24x3.方法二(配凑法)因为x22x(x22x1)(4x4)3(x1)24(x1)3,所以f(x1)(x1)24(x1)3,即f(x)x24x3.题型三作函数的图象例3作出下列函数的图象:(1)yx1(xZ);(2)yx22x(x0,3)解 (1)这个函数的图象由一些点组成,这些点都在直线yx1上,如图(1)所示(2)因为0x3,所以这个函数的图象是抛物线yx22

6、x介于0x3之间的一部分,如图(2)所示规律方法1.作函数图象主要有三步:列表、描点、连线作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表画出图象2函数的图象可能是平滑的曲线,也可能是一群孤立的点,画图时要注意关键点,如图象与坐标轴的交点、区间端点,二次函数的顶点等等,特别要分清区间端点是实心点还是空心点跟踪演练3画出下列函数的图象:(1)yx1(x0);(2)yx22x(x1或x1)解(1)yx1(x0)表示一条射线,图象如图(1)(2)yx22x(x1)21(x1或x1)是抛物线yx22x去掉1x1之间的部分后剩余的曲线图象如图(2)课堂达标1已知函数f(x)由下表给出

7、,则f(3)等于()x1x222x4f(x)123A.1B2C3D不存在答案C解析由表可知f(3)3.2y与x成反比,且当x2时,y1,则y关于x的函数关系式为()AyByCyDy答案C解析设y,由1得,k2.因此,y关于x的函数关系式为y.3若f(x2)2x3,f(3)的值是()A9B7C5D3答案C解析令x23,则x1,f(3)2135.4如果二次函数的图象开口向上且关于直线x1对称,且过点(0,0),则此二次函数的解析式可以是()Af(x)x21Bf(x)(x1)21Cf(x)(x1)21Df(x)(x1)21答案D解析由二次函数的图象开口向上且关于直线x1对称,可排除A、B;又图象过点(0,0),可排除C;D项符合题意5如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),那么f的值等于_答案2解析由函数f(x)图象,知f(1)2,f(3)1,ff(1)2.课堂小结1.函数三种表示法的优缺点2描点法画函数图象的步骤:(1)求函数定义域;(2)化简解析式;(3)列表;(4)描点;(5)连线3求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)消元法等