ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:344.50KB ,
资源ID:114757      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-114757.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017-2018学年内蒙古翁牛特旗乌丹二中、呼和浩特二十一中联考高二(上)期末数学试卷(理科)含详细解答)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2017-2018学年内蒙古翁牛特旗乌丹二中、呼和浩特二十一中联考高二(上)期末数学试卷(理科)含详细解答

1、2017-2018学年内蒙古翁牛特旗乌丹二中、呼和浩特二十一中联考高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1(5分)已知一组数据为8,1,4,x,10,13且这组数的中位数是7,那么数据中的众数是()A7B6C4D102(5分)某班有学生60人,现将所有学生按1,2,3,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3,33,48号学生在样本中,则样本中另一个学生的编号为()A28B23C18D133(5分)中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目

2、称为“中国剩余定理”,若正整数N除以正整数m后的余数为n,则记为Nn(modm),例如112(mod3)现将该问题以程序框图的算法给出,执行该程序框图,则输出的n等于()A21B22C23D244(5分)为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别是x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()Ax1,x2,xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数5(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x和y的值

3、分别为()A3,5B5,5C3,7D5,76(5分)“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是()ABCD7(5分)某人向一个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为()ABCD8(5分)下列说法不正确的是()A若“p且q”为假,则p,q至少有一个是假命题B命题“xR,x2x10”的否定是“

4、xR,x2x10”C设A,B是两个集合,则“AB”是“ABA”的充分不必要条件D当a0时,幂函数yxa在(0,+)上单调递减9(5分)已知双曲线1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()ABCD10(5分)已知直三棱柱ABCA1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()ABCD11(5分)已知抛物线y22px(p0)的焦点为双曲线1(a0,b0)的右焦点,且其准线被该双曲线截得的弦长是b,则该双曲线的离心率为()ABCD12(5分)已知椭圆的两个焦点是F1,F2,E是直线

5、yx+2与椭圆的一个公共点,当|EF1|+|EF2|取得最小值时椭圆的离心率为()ABCD二、填空题:(本大题共4小题,每小题5分,共20分)13(5分)命题“xR,x22x+10”的否定是   14(5分)已知向量(1,1,0),(1,0,2),且向量2与向量k+互相垂直,则实数k的值为   15(5分)已知l,且l的方向向量为(2,m,1),平面的法向量为,则m   16(5分)已知双曲线C:1的右焦点为F,过点F向双曲线的一条渐进线引|垂线,垂足为M,交另一条渐近线于N,若3,则双曲线的离心率   三、解答题(共6小题,满分70分)17(12分)为

6、了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:组序高度区间频数频率1230,235)140.142235,240)0.263240,245)0.204245,250)305250,255)10合计1001.00()写出表中处的数据;()用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?()在()的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率18(12分)袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2,3,4的红球,2个编号为

7、A、B的黑球,现从中任取2个小球()求所取取2个小球都是红球的概率;()求所取的2个小球颜色不相同的概率19(12分)已知空间三点A(2,0,2),B(1,1,2),C(3,0,4),设,(1)求与的夹角的余弦值;(2)若向量k与k互相垂直,求实数k的值;(3)若向量与共线,求实数的值20(12分)已知抛物线C:y24x的焦点为F,过点F的直线l与C相交于A、B()若|AB|,求直线l的方程()求|AB|的最小值21(12分)已知F1,F2分别为椭圆+y21的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2()求ABF2的周长;()若AF2BF2,求ABF2的面积22(

8、10分)如图,在直三棱柱ABCA1B1C1中,ABC是正三角形,E是棱BB1的中点()求证平面AEC1平面AA1C1C;()若AA1AB,求二面角CAEC1的平面角的余弦值2017-2018学年内蒙古翁牛特旗乌丹二中、呼和浩特二十一中联考高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)已知一组数据为8,1,4,x,10,13且这组数的中位数是7,那么数据中的众数是()A7B6C4D10【分析】首先,根据中位数为7,确定x的值,然后,确定其众数即可【解答】解:数据为8,1,4,x,10,13且这组数的中位数是7,(x+4)7,x10,数据

9、中的众数是10,故选:D【点评】本题重点考查了中位数、众数的概念和基本运算,属于中档题2(5分)某班有学生60人,现将所有学生按1,2,3,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3,33,48号学生在样本中,则样本中另一个学生的编号为()A28B23C18D13【分析】求出抽样间隔f15,由编号为3,33,48号学生在样本中,求出样本中另一个学生的编号为3+1518【解答】解:某班有学生60人,现将所有学生按1,2,3,60随机编号,采用系统抽样的方法抽取一个容量为4的样本(等距抽样),抽样间隔f15,编号为3,33,48号学生在样本中,样本中另一个学

10、生的编号为3+1518故选:C【点评】本题考查样本中学生编号的求法,考查系统抽样等基础知识,考查运算求解能力,考查函数与方程思想,是基础题3(5分)中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N除以正整数m后的余数为n,则记为Nn(modm),例如112(mod3)现将该问题以程序框图的算法给出,执行该程序框图,则输出的n等于()A21B22C23D24【分析】该程序框图的作用是求被3和5除后的余数为2的数,根据所给的选项,得出结论【解答】解:该程序框图的作用是求被3除后的余数为2,被5除后的

11、余数为3的数,在所给的选项中,满足被3除后的余数为2,被5除后的余数为3的数只有23,故选:C【点评】本题主要考查程序框图的应用,属于基础题4(5分)为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别是x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()Ax1,x2,xn的平均数Bx1,x2,xn的标准差Cx1,x2,xn的最大值Dx1,x2,xn的中位数【分析】利用平均数、标准差、最大值、中位数的定义和意义直接求解【解答】解:在A中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标,故A不可以用来评估这种农作物亩产量稳

12、定程度;在B 中,标准差能反映一个数据集的离散程度,故B可以用来评估这种农作物亩产量稳定程度;在C中,最大值是一组数据最大的量,故C不可以用来评估这种农作物亩产量稳定程度;在D中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D不可以用来评估这种农作物亩产量稳定程度故选:B【点评】本题考查可以用来评估这种农作物亩产量稳定程度的量的判断,是基础题,解题时要认真审题,注意平均数、标准差、最大值、中位数的定义和意义的合理运用5(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A3,5B5

13、,5C3,7D5,7【分析】由已知有中这两组数据的中位数相等,且平均值也相等,可得x,y的值【解答】解:由已知中甲组数据的中位数为65,故乙组数据的中位数也为65,即y5,则乙组数据的平均数为:66,故x3,故选:A【点评】本题考查的知识点是茎叶图,平均数和中位数,难度不大,属于基础题6(5分)“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是()ABCD【分析】先求出基本

14、事件总数n15,再求出其中金额之和大于等于4有可能的种数,由此能求出甲、乙二人抢到的金额之和不低于4元的概率【解答】解:所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,基本事件总数n15,其中金额之和大于等于4有可能有:(0.62,3.41),(1.49,3.41),(1.81,2.19),(1.81,3.41),(2.19,3.41),共有5种,甲、乙二人抢到的金额之和不低于4元的概率p故选:C【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用7(5分)某人向一个

15、半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各点是随机的,则此人射击中靶点与靶心的距离小于2的概率为()ABCD【分析】本题考查的知识点是几何概型的意义,关键是要找出射击中靶点与靶心的距离小于2对应的平面图形的面积,及整个靶子面积的大小,并将它们一齐代入几何概型的计算公式,进行求解【解答】解:整个靶子是下图中所示的大圆,而距离靶心距离小于2用下图中阴影部分的小圆所示:故此人射击中靶点与靶心的距离小于2的概率P故选:B【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关解决的步骤均为:求出满足条件A

16、的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P求解8(5分)下列说法不正确的是()A若“p且q”为假,则p,q至少有一个是假命题B命题“xR,x2x10”的否定是“xR,x2x10”C设A,B是两个集合,则“AB”是“ABA”的充分不必要条件D当a0时,幂函数yxa在(0,+)上单调递减【分析】逐项判断即可【解答】解:A、p且q为假,根据复合命题的判断方法知,p,q至少有一个为假,故A正确;B、根据特称命题的否定形式知B正确;C、当AB可得ABA,反之,当ABA时,也可推出AB,所以“AB”是“ABA”的充要条件,故C错误;D、由幂函数的性质易知D正确

17、故选:C【点评】本题考查命题的判断,充分必要条件等知识考查学生对基本知识的掌握和运用属于基础题9(5分)已知双曲线1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()ABCD【分析】利用三角形是正三角形,推出a,b关系,通过c2,求解a,b,然后等到双曲线的方程【解答】解:双曲线1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),可得c2,即,解得a1,b,双曲线的焦点坐标在x轴,所得双曲线方程为:故选:D【点评】本题考查双曲线的简单性质的应用,考查计算能力10(5分)已知直三棱柱ABC

18、A1B1C1中,ABC120,AB2,BCCC11,则异面直线AB1与BC1所成角的余弦值为()ABCD【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和MNP的余弦值即可【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,),可知MNAB1,NPBC1;作BC中点Q,则PQM为直角三角形;PQ1,MQAC,ABC中,由

19、余弦定理得AC2AB2+BC22ABBCcosABC4+1221()7,AC,MQ;在MQP中,MP;在PMN中,由余弦定理得cosMNP;又异面直线所成角的范围是(0,AB1与BC1所成角的余弦值为【解法二】如图所示,补成四棱柱ABCDA1B1C1D1,求BC1D即可;BC1,BD,C1D,+BD2,DBC190,cosBC1D故选:C【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题11(5分)已知抛物线y22px(p0)的焦点为双曲线1(a0,b0)的右焦点,且其准线被该双曲线截得的弦长是b,则该双曲线的离心率为()ABCD【分析】由题意可

20、知:抛物线的焦点F(c,0),准线xc,将xc代入双曲线方程,解得:y,即可求得b,a3b,利用双曲线的离心率公式,即可求得双曲线的离心率【解答】解:由题意可知:抛物线的焦点F(c,0),准线xc,将xc代入双曲线方程,解得:y,则准线被该双曲线截得的弦长为,b,a3b,双曲线的离心率e,则双曲线的离心率e,故选:D【点评】本题考查双曲线的简单几何性质,主要是离心率公式,考查计算能力,属于基础题12(5分)已知椭圆的两个焦点是F1,F2,E是直线yx+2与椭圆的一个公共点,当|EF1|+|EF2|取得最小值时椭圆的离心率为()ABCD【分析】由题意得(m+2)x2+4(m+1)x+3(m+1)

21、0由0,得m2|EF1|+|EF2|取得最小值,求出m由此能求出椭圆离心率【解答】解:由题意,m0知m+11,由得(m+2)x2+4(m+1)x+3(m+1)0由16(m+1)212(m+2)(m+1)4(m+1)(m2)0,解得m2,或m1(舍去)m2,当且仅当m2时,|EF1|+|EF2|取得最小值:2此时a,c,e故选:D【点评】本题考查椭圆性质的应用,注意合理地进行等价转化二、填空题:(本大题共4小题,每小题5分,共20分)13(5分)命题“xR,x22x+10”的否定是xR,x22x+10【分析】根据命题“xR,x22x+10”是特称命题,其否定为全称命题,即xR,x22x+10从而

22、得到答案【解答】解:命题“xR,x22x+10”是特称命题否定命题为:xR,x22x+10故答案为:xR,x22x+10【点评】本题考查命题的否定,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化14(5分)已知向量(1,1,0),(1,0,2),且向量2与向量k+互相垂直,则实数k的值为【分析】由已知中向量(1,1,0),(1,0,2),我们可以求出向量k+与2的坐标,根据k+与2互相垂直,两个向量的数量积为0,构造关于k的方程,解方程即可求出a值【解答】解:向量(1,1,0),(1,0,2),k+(k1,k,2),2(3

23、,2,2)k+与2互相垂直,则(k+)(2)3(k1)+2k45k70解得k故答案为:【点评】本题考查的知识点是向量语言表述线线的垂直关系,其中根据k+与2互相垂直,两个向量的数量积为0,构造关于k的方程,是解答本题的关键15(5分)已知l,且l的方向向量为(2,m,1),平面的法向量为,则m8【分析】根据题意可知向量为(2,m,1)与平面的法向量垂直,从而向量的数量积为0,建立等式关系,解之即可求出所求【解答】解:l,且l的方向向量为(2,m,1),平面的法向量为,向量为(2,m,1)与平面的法向量垂直则(2,m,1)2+m+20解得m8故答案为:8【点评】本题主要考查了向量语言表述线面的垂

24、直、平行关系,同时考查了空间向量的数量积,属于中档题16(5分)已知双曲线C:1的右焦点为F,过点F向双曲线的一条渐进线引|垂线,垂足为M,交另一条渐近线于N,若3,则双曲线的离心率【分析】设一渐近线OM的方程为yx,设M(m,m),N(n,),由3,求得点M的坐标,再由FMOM,斜率之积等于1,求出a22b2,代入e,进行运算即可得到【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为yx,则另一渐近线ON的方程为yx,设M(m,),N(n,),3,3(cm,)(nc,),3(cm)nc,mc,n2c,M(,)由FMOM可得,斜率之积等于1,即1,a22b2,e故答案为:【点评】本

25、题考查双曲线的离心率的求法,注意运用双曲线的渐近线,求得点M的坐标是解题的关键,考查化简整理的运算能力,属于中档题三、解答题(共6小题,满分70分)17(12分)为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:组序高度区间频数频率1230,235)140.142235,240)0.263240,245)0.204245,250)305250,255)10合计1001.00()写出表中处的数据;()用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?()在()的前提下,从抽出的容量为6的样本中随机选取两个个

26、体进行进一步分析,求这两个个体中至少有一个来自第3组的概率【分析】()由频率,利用频数分布表能求出表中处的数据()抽样比为,由此能求出第3、4、5组中抽取的个体数()设从第3组抽取的2个个体是甲、乙,第4组抽取的3个个体是a、b、c,第5组抽取的1个个体是d,由此利用列举法能求出这两个个体中至少有一个来自第3组的概率【解答】解:()由频率,得:,解得26,20,0.30,0.10(4分)()抽样比为,第3、4、5组中抽取的个体数分别是0.1202,0.1303,0.1101(7分)()设从第3组抽取的2个个体是甲、乙,第4组抽取的3个个体是a、b、c,第5组抽取的1个个体是d,记事件A为“两个

27、个体都不来自第3组”,则从中任取两个的基本事件为:甲乙、甲a、甲b、甲c、甲d、乙a、乙b、乙c、乙d、ab、ac、ad、bc、bd、cd,共15个,且各基本事件等可能(9分)其中事件“两个个体中至少有一个来自第3组”包含的基本事件为:甲乙、甲a、甲b、甲c、甲d、乙a、乙b、乙c、乙d,共有9个(11分)故两个个体中至少有一个来自第3组的概率(12分)【点评】本题考查频数分布表的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用18(12分)袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2,3,4的红球,2个编号为A、B的黑球,现从中任取2个小球()求所

28、取取2个小球都是红球的概率;()求所取的2个小球颜色不相同的概率【分析】()利用列举法求出任取2个小球的基本事件总数,用M表示“所取取2个小球都是红球”,利用列举法求出M包含的基本事件个数,由此能求出所取取2个小球都是红球的概率()用N表示“所取的2个小球颜色不相同”,利用列举法求出N包含的基本事件个数,由此能求出所取的2个小球颜色不相同的概率【解答】解:()由题意知,任取2个小球的基本事件有:1,2,1,3,1,4,1,A,1,B,2,3,2,4,2,A,2,B,3,4,3,A,3,B,4,A,4,B,A,B,共15个,用M表示“所取取2个小球都是红球”,则M包含的基本事件有:1,2,1,4

29、,2,3,2,4,3,4,共6个,所取取2个小球都是红球的概率:P(M)()用N表示“所取的2个小球颜色不相同”,则N包含的基本事件有:1,A,1,B,2,A,2,B,3,A,3,B,4,A,4,B,共8个,所取的2个小球颜色不相同的概率:P(N)【点评】本题考查古典概型等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题19(12分)已知空间三点A(2,0,2),B(1,1,2),C(3,0,4),设,(1)求与的夹角的余弦值;(2)若向量k与k互相垂直,求实数k的值;(3)若向量与共线,求实数的值【分析】(1)求出(1,1,0),(1,0,2),利用空间向

30、量夹角余弦值计算公式能求出与的夹角的余弦值(2)推导出k(k,k,0)+(1,0,2)(k1,k,2),k(k,k,0)(2,0,4)(k+2,k,4),由向量k与k互相垂直,能求出实数k的值(3)推导出(,0)(1,0,2)(+1,2),(1,1,0)(,0,2)(1+,1,2),由向量与共线,能求出实数的值【解答】解:(1)空间三点A(2,0,2),B(1,1,2),C(3,0,4),(1,1,0),(1,0,2),设与的夹角为,则cos(2)(1,1,0),(1,0,2),k(k,k,0)+(1,0,2)(k1,k,2),k(k,k,0)(2,0,4)(k+2,k,4),向量k与k互相垂

31、直,(k)(k)(k1)(k+2)+k280,整理,得2k2+k100,解得实数k的值为或2(3)(1,1,0),(1,0,2),(,0)(1,0,2)(+1,2),(1,1,0)(,0,2)(1+,1,2),向量与共线,解得实数的值为1或1【点评】本题考查向量的夹角的余弦值的求法,考查实数值的求法,是基础题,解题时要认真审题,注意空间向量夹角余弦值计算公式、向量垂直、向理共线的性质的合理运用20(12分)已知抛物线C:y24x的焦点为F,过点F的直线l与C相交于A、B()若|AB|,求直线l的方程()求|AB|的最小值【分析】()设直线l的方程为:x+my10,代入y24x,整理得,y2+4

32、my40,利用韦达定理和抛物线的定义,能够求出直线l的方程()由()知,|AB|4(m2+1)4,由此能求出|AB|的最小值【解答】解:()设直线l的方程为:x+my10,代入y24x,整理得,y2+4my40设A(x1,y1),B(x2,y2),则y1,y2是上述关于y的方程的两个不同实根,所以y1+y24m根据抛物线的定义知:|AB|x1+x2+2(1my1)+(1my2)+24(m2+1)若|AB|,则4(m2+1),m即直线l有两条,其方程分别为:x+y10,xy10()由()知,|AB|4(m2+1)4,当且仅当m0时,|AB|有最小值4【点评】本题考查直线方程的求法,考查弦的最小值

33、的求法解题时要认真审题,仔细解答,注意抛物线简单性质、韦达定理、均值不等式等知识点的灵活运用21(12分)已知F1,F2分别为椭圆+y21的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2()求ABF2的周长;()若AF2BF2,求ABF2的面积【分析】(I)由椭圆定义得ABF2的周长为4a,由此能求出结果(II)设直线l的方程为xmy1,与椭圆联立,得(m2+2)y22my10由此利用韦达定理、向量垂直的性质、弦长公式,能求出ABF2的面积【解答】解:(I)F1,F2分别为椭圆+y21的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2ABF2的

34、周长为|AF1|+|AF2|+|BF1|+|BF2|4a4(3分)(II)设直线l的方程为xmy1,由,得(m2+2)y22my10设A(x1,y1),B(x2,y2),则y1+y2,y1y2,(5分)AF2BF2,0,(x11)(x21)(my12)(my22)+y1y2(m2+1)y1y22m(y1+y2)+42m+40m27(10分)ABF2的面积S|F1F2|(12分)【点评】本题考查三角形的面积及周长的求法,是中档题,解题时要认真审题,注意椭圆定义、韦达定理、向量垂直的性质、弦长公式的合理运用22(10分)如图,在直三棱柱ABCA1B1C1中,ABC是正三角形,E是棱BB1的中点()

35、求证平面AEC1平面AA1C1C;()若AA1AB,求二面角CAEC1的平面角的余弦值【分析】()分别取AC,AC1的中点O,F,推导出四边形OBEF是平行四边形,从而OBEF推导出OB面ACC1A1,从而EF平面ACC1A1,由此能证明平面AEC1平面AA1C1C()建立空间直角坐标系,利用向量法能求出二面角CAEC1的平面角的余弦值【解答】证明:()分别取AC,AC1的中点O,F,连结OB,OF,EF,则OFBE,四边形OBEF是平行四边形,OBEFABCA1B1C1是直三棱柱,ABC是正三角形,O是AC的中点,OB面ACC1A1,EF平面ACC1A1,平面AEC1平面AA1C1C()建立如图Oxyz空间直角坐标系,设AA1AB2,则,设平面AEC的法向量为,平面AEC1的法向量为,则有,得,设二面角CAEC1的平面角为,则二面角CAEC1的平面角的余弦值为【点评】本题考查面面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、方程与函数思想、数形结合思想,是中档题