ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:25.64KB ,
资源ID:114562      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-114562.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《2.3.3 向量数量积的坐标运算与度量公式》同步练习(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

《2.3.3 向量数量积的坐标运算与度量公式》同步练习(含答案)

1、2.3.3向量数量积的坐标运算与度量公式基础过关1已知向量a(2,1),b(1,k),a(2ab)0,则k等于()A12 B6C6 D12答案D解析由已知得a(2ab)2a2ab2(41)(2k)0,k12.2已知a(3,2),b(1,0),向量ab与a2b垂直,则实数的值为()A B.C D.答案A解析由a(3,2),b(1,0),知ab(31,2),a2b(1,2)又(ab)(a2b)0,3140,.3已知点A(1,1)、B(1,2)、C(2,1)、D(3,4),则向量在方向上的正射影为()A. B.C D答案A解析因为(2,1),(5,5),所以(2,1)(5,5)15,|5.所以向量在

2、方向上的正射影为|cos,选A.4已知向量a(1,2),b(2,3)若向量c满足(ca)b,c(ab),则c等于()A. B.C. D.答案D解析设c(x,y),则ca(x1,y2),又(ca)b,2(y2)3(x1)0.又c(ab),(x,y)(3,1)3xy0.由解得x,y.5若向量a(1,2),b(1,1),则2ab与ab的夹角等于()A B.C. D.答案C解析2ab2(1,2)(1,1)(3,3),ab(1,2)(1,1)(0,3),(2ab)(ab)9,|2ab|3,|ab|3.设所求两向量夹角为,则cos,.6设a(2,x),b(4,5),若a与b的夹角为钝角,则x的取值范围是_

3、答案x|x且x解析为钝角,cos0,即ab85x0,x.ab时有4x100,即x,当x时,a(2,)b,a与b反向,即.故a与b的夹角为钝角时,x且x.7已知a(4,3),b(1,2)(1)求a与b的夹角的余弦值;(2)若(ab)(2ab),求实数的值解(1)ab4(1)322,|a|5,|b|,cosa,b.(2)ab(4,32),2ab(7,8),又(ab)(2ab),(ab)(2ab)7(4)8(32)0,.能力提升8已知向量m(1,1),n(2,2),若(mn)(mn),则等于()A4 B3C2 D1答案B解析因为m(1,1),n(2,2)所以mn(23,3),mn(1,1)因为(mn

4、)(mn),所以(mn)(mn)0,所以(23)30,解得3.故选B.9与向量a,b的夹角相等,且模为1的向量是()A.B.或C.D.或答案B10平面向量a(1,2),b(4,2),cmab(mR),且c与a的夹角等于c与b的夹角,则m_.答案2解析因为向量a(1,2),b(4,2),所以cmab(m4,2m2),所以acm42(2m2)5m8,bc4(m4)2(2m2)8m20.因为c与a的夹角等于c与b的夹角,所以,即,所以,解得m2.11已知平面向量a(3,4),b(9,x),c(4,y),且ab,ac.(1)求b和c;(2)若m2ab,nac,求向量m与向量n的夹角的大小解(1)ab,

5、3x360.x12.ac,344y0.y3.b(9,12),c(4,3)(2)m2ab(6,8)(9,12)(3,4),nac(3,4)(4,3)(7,1),设m,n的夹角为,则cos.0,即m,n的夹角为.12设a(1,2),b(2,3),又c2ab,damb,若c与d夹角为45,求实数m的值解a(1,2),b(2,3),c2ab2(1,2)(2,3)(0,1),damb(1,2)m(2,3)(12m,23m),cd0(12m)1(23m)23m.又|c|1,|d|,cos45.化简得5m28m30,解得m1或m.创新突破13在ABC中,c,a,b,且abbcac,试判断ABC的形状解在ABC中,易知0,即abc0,acb,abc,两式相减可得b22abc22acc2b2,则2b22(abac)2c2.abbcac,2b22c2,即|b|c|.同理可得|a|b|,故|,即ABC是等边三角形.