ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:149.71KB ,
资源ID:114509      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-114509.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.1.2 弧度制和弧度制与角度制的换算 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.1.2 弧度制和弧度制与角度制的换算 学案(含答案)

1、1.1.2弧度制和弧度制与角度制的换算学习目标1.理解角度制与弧度制的概念,能对弧度和角度进行正确地转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的扇形弧长公式和面积公式.知识点一角度制与弧度制(1)角度制定义:用度作单位来度量角的制度.1度的角:把圆周360等分,则其中1份所对的圆心角是1度.(2)弧度制定义:以弧度为单位来度量角的制度.1弧度的角:长度等于半径长的圆弧所对的圆心角.弧度数的计算公式:在半径为r的圆中,弧长为l的弧所对的圆心角为 rad,则.知识点二角度制与弧度制的换算(1)角度与弧度的互化角度化弧度弧度化角度3602 rad2

2、rad360180 rad rad1801 rad0.017 45 rad1 rad57.30(2)一些特殊角的度数与弧度数的对应关系度0130456090120135150180270360弧度02知识点三扇形的弧长及面积公式角度制弧度制弧长公式llr扇形面积公式SSlrr2注意事项r是扇形半径,n是圆心角的角度数r是扇形半径,是圆心角的弧度数,l是弧长1.1 rad的角和1的角大小相等.()提示1 rad的角和1的角大小不相等,1 rad.2.用弧度来表示的角都是正角.()提示弧度也可表示负角,负角的弧度数是一个负数.3.“1弧度的角”的大小和所在圆的半径大小无关.()提示“1弧度的角”的

3、大小等于半径长的圆弧所对的圆心角,是一个定值,与所在圆的半径大小无关.4.半径为1的圆弧中,60角所对的圆弧长为60.()提示使用扇形弧长公式lr时应将角化为弧度,60等于,所以60角所对弧长为.题型一角度与弧度的互化例1将下列角度与弧度进行互化.(1)20;(2)15;(3);(4).解(1)20.(2)15.(3)180105.(4)180396.反思感悟将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记180 rad即可求解.把弧度转化为角度时,直接用弧度数乘以即可.跟踪训练1(1)把11230化成弧度;(2)把化成度.解(1)11230.(2)75.题型二用弧度制表示终边相同的角

4、例2已知角2 010.(1)将改写成2k(kZ,02)的形式,并指出是第几象限的角;(2)在区间5,0)上找出与终边相同的角.解(1)2 0102 01052,又,的终边与终边相同,是第三象限的角.(2)与终边相同的角可以写成2k(kZ),又50,当k3时,;当k2时,;当k1时,.反思感悟用弧度制表示终边相同的角2k(kZ)时,其中2k(kZ)是的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2如图所示:(1)用弧度制分别写出终边落在OA,OB位置上的角的集合;(2)用弧度制写出终边落在阴影部分(包括边界)的角的集合.解(1)终边在OA上的角的集合为.终边在OB上的角的集合为

5、.(2).题型三扇形的弧长及面积公式的应用例3(1)若扇形的中心角为120,半径为,则此扇形的面积为()A. B. C. D.(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为()A.2 B. C.2sin 1 D.答案(1)A(2)D解析(1)扇形的中心角为120,半径为,所以S扇形|r2()2.(2)连接圆心与弦的中点,则以弦心距、弦长的一半、半径长为长度的线段构成一个直角三角形,半弦长为2,其所对的圆心角为1,故半径长为.这个圆心角所对的弧长为2.反思感悟联系半径、弧长和圆心角的有两个公式:一是Slrr2,二是lr,如果已知其中两个,就可以求出另一个.求解时应注意先把度化

6、为弧度,再计算.跟踪训练3一个扇形的面积为1,周长为4,求该扇形的圆心角的弧度数.解设扇形的半径为R,弧长为l,则2Rl4,l42R,根据扇形面积公式SlR,得1(42R)R,R1,l2,2,即该扇形的圆心角为2 rad.扇形面积计算典例九章算术是我国古代数学的杰出代表作.其中方田章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为4 m的弧田,按照上述经验公式计算所得弧田面积约是()A.6 m2 B.9 m2C.12 m2 D.15 m2答案B解析根据题设,弦24s

7、in 4(m),矢44cos 2(m),故弧田面积(弦矢矢2)(4222)429(m2).素养评析本例中通过对实际问题进行分析,抽象出具体的数学模型,建立相应公式使问题得解,这就是数学核心素养数学抽象的体现.1.下列说法中,错误的是()A.“度”与“弧度”是度量角的两种不同的度量单位B.1的角是周角的,1 rad的角是周角的C.1 rad的角比1的角要大D.用角度制和弧度制度量角,都与圆的半径有关答案D解析根据1度、1弧度的定义可知只有D是错误的,故选D.2.把化为角度是()A.270 B.280 C.288 D.318答案C解析288.3.若5,则角的终边在()A.第四象限 B.第三象限 C

8、.第二象限 D.第一象限答案D解析25与5的终边相同,25,25是第一象限角,则5也是第一象限角.4.已知扇形的周长是6 cm,面积是2 cm2,则扇形圆心角的弧度数是()A.1 B.4 C.1或4 D.2或4答案C解析设扇形半径为r,圆心角的弧度数为,则由题意得或5.若一扇形的圆心角为72,半径为20 cm,则扇形的面积为 .答案80 cm2解析72,S扇形r220280(cm2).1.角的概念推广后,在弧度制下,角的集合与实数集R之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180 rad”这一关系式.易知:度数 rad弧度数,弧度数度数.3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.