ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:197.85KB ,
资源ID:113653      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-113653.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《1.1.3圆柱、圆锥、圆台和球》课后作业(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

《1.1.3圆柱、圆锥、圆台和球》课后作业(含答案)

1、1.1.3圆柱、圆锥、圆台和球基础过关1.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥答案D解析连接正方形的两条对角线知对角线互相垂直,故绕对角线旋转一周形成两个圆锥.2.如图所示是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴旋转180后形成一个组合体,下面说法不正确的是()A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点答案A3.过球面上任意两点A、B作大圆,可能的个数是()A.有且只有一个B.一个或无穷多个C.无数个

2、D.以上均不正确答案B解析当过A,B的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时过A,B作球的大圆有无数个;当直线AB不经过球心O时,经过A,B,O的截面就是一个大圆,这时只能作出一个大圆.4.在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是()A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱答案B解析一个六棱柱中挖去一个等高的圆柱.5.一个正方体内接于一个球,过球心作一截面,如图所示,则截面可能的图形是()A.B.C.D.答案C解析当截面平行于正方体的一个侧面时得,当截面过正方体的体对角线时得,当截面不平行于任

3、何侧面也不过对角线时得,但无论如何都不能截出.6.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是_.答案2解析设圆锥的底面半径为r,则圆锥的高h.所以由题意可知2rhr8,r28,h2.7.如图所示,几何体可看作由什么图形旋转360得到?画出平面图形和旋转轴.解先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:能力提升8.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()答案B解析由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离,故正确答案为B.9.过球的一条半径的中点,作垂直于该半径的截面,则截面的面积与球的一个大圆面积之比为()A.

4、14B.12C.34D.23答案C10.已知球的两个平行截面的面积分别为5和8,它们位于球心的同一侧,且距离为1,那么这个球的半径是()A.4B.3C.2D.0.5答案B解析如图所示,两个平行截面的面积分别为5、8,两个截面圆的半径分别为r1,r22.球心到两个截面的距离d1,d2,d1d21,R29,R3.11.在半径为13的球面上有A、B、C三点,其中AC6,BC8,AB10,则球心到经过这三个点的截面的距离为_.答案12解析由线段的长度知ABC是以AB为斜边的直角三角形,所以其外接圆的半径r5,所以d12.12.一个圆锥的高为2,母线与轴的夹角为30,求圆锥的母线长以及圆锥的轴截面的面积

5、(如图).解母线长l,底面半径r2tan30,所以S22,即圆锥的轴截面的面积是.创新突破13.如图所示,已知圆锥SO中,底面半径r1,母线长l4,M为母线SA上的一个点,且SMx,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x);(2)绳子最短时,顶点到绳子的最短距离;(3)f(x)的最大值.解将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA的长度L就是圆O的周长,L2r2.ASM36036090.(1)由题意知绳子长度的最小值为展开图中的AM,其值为AM(0x4).f(x)AM2x216(0x4).(2)绳子最短时,在展开图中作SRAM,垂足为R,则SR的长度为顶点S到绳子的最短距离,在SAM中,SSAMSASMAMSR,SR(0x4),即绳子最短时,顶点到绳子的最短距离为(0x4).(3)f(x)x216(0x4)是增函数,f(x)的最大值为f(4)32.