1、坐标系与参数方程考向一:极坐标方程极坐标一般地,不作特殊说明时,我们认为0,可取任意实数极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(,),则它们之间的关系为:1、2016全国,23在直角坐标系xOy中,圆C的方程为(x6)2y225.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|,求l的斜率解(1)由xcos,ysin可得圆C的极坐标方程212cos110.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为(R)设A,B所对应的极径分别为1,2,将l的极坐标方程
2、代入C的极坐标方程得212cos110.于是1212cos,1211.|AB|12|.由|AB|得cos2,tan.所以l的斜率为或.解法二:将l的参数方程代入C的方程得t2+12cost+11=0于是t1t212cos,t1t211.|AB|t1t2|由|AB|得cos2,tan.所以l的斜率为或.条件探究:若直线l的极坐标方程为(R),l与C交于M,N两点,求CMN的面积设A,B所对应的极径分别为1,2,将l的极坐标方程代入C的极坐标方程得262110.于是1262,1211.|AB|12|72-44=27圆C的半径为5,CMN的面积为314.2、【2019年高考全国卷理数】如图,在极坐标
3、系Ox中,弧,所在圆的圆心分别是,曲线是弧,曲线是弧,曲线是弧(1)分别写出,的极坐标方程;(2)曲线由,构成,若点在M上,且,求P的极坐标【答案】(1)的极坐标方程为,的极坐标方程为,的极坐标方程为(2)或或或【解析】(1)由题设可得,弧所在圆的极坐标方程分别为,所以的极坐标方程为,的极坐标方程为,的极坐标方程为(2)设,由题设及(1)知若,则,解得;若,则,解得或;若,则,解得综上,P的极坐标为或或或3、2017全国,22在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为cos4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|OP|1
4、6,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为,点B在曲线C2上,求OAB面积的最大值解(1)设P的极坐标为(,)(0),M的极坐标为(1,)(10)由题设知|OP|,|OM|1.由|OM|OP|16得C2的极坐标方程为4cos(0)因此C2的直角坐标方程为(x2)2y24(x0)(2)设点B的极坐标为(B,)(B0)由题设知|OA|2,B4cos,于是OAB的面积S|OA|BsinAOB4cos22.当时,S取得最大值2.所以OAB面积的最大值为2.4、【2019年高考全国卷理数】在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P(1)当时,求及l的极坐标方程;(2
5、)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程【答案】(1),l的极坐标方程为;(2)【解析】(1)因为在C上,当时,由已知得设为l上除P的任意一点在中,经检验,点在曲线上所以,l的极坐标方程为(2)设,在中,即因为P在线段OM上,且,故的取值范围是所以,P点轨迹的极坐标方程为考向二:参数方程1、2017全国,22在直角坐标系xOy中,曲线C的参数方程为 (为参数),直线l的参数方程为 (t为参数)(1)若a1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.解(1)曲线C的普通方程为y21.当a1时,直线l的普通方程为x4y30.由解得或从而C与l的交点坐标为(3,
6、0),(,).(2)直线l的普通方程为x4ya40,故C上的点(3cos,sin)到l的距离为d.当a4时,d的最大值为.由题设得,所以a8;当a4时,d的最大值为.由题设得,所以a16.综上,a8或a16.2、【2019年高考全国卷理数】在直角坐标系xOy中,曲线C的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值【答案】(1);的直角坐标方程为;(2)【解析】(1)解法一:x=1-t21+t2=-1+21+t2, 21+t2=x+1,t2=1-x1+x, y=4t1+t2, y2=1
7、6t2(1+t2)2=41-xx+1=4-4x2所以C的直角坐标方程为.解法二:因为,且,所以C的直角坐标方程为的直角坐标方程为(2)由(1)可设C的参数方程为(为参数,)C上的点到的距离为当时,取得最小值7,故C上的点到距离的最小值为3、2018全国,22在平面直角坐标系xOy中,O的参数方程为(为参数),过点(0,)且倾斜角为的直线l与O交于A,B两点(1)求的取值范围;(2)求AB中点P的轨迹的参数方程解:(1)解析一:O的直角坐标方程为x2y21.当时,l与O交于两点当时,记tank,则l的方程为ykx.l与O交于两点当且仅当1,解得k1,即(,)或(,).综上的取值范围是(,).解析
8、二:设l的参数方程为t为参数,代入O的直角坐标方程得t22tsin10.直线l与O交于A,B两点,所以=8sin2-40,sin22,的取值范围是(,).(2)l的参数方程为t为参数,.设A,B,P对应的参数分别为tA,tB,tP,则tP,且tA,tB满足t22tsin10.于是tAtB2sin,tPsin.又点P的坐标(x,y)满足所以点P的轨迹的参数方程是为参数,.条件探究:点M(0,),过点M的直线l与O交于A,B两点,若MB=2MA,求直线l 的方程。解:l的参数方程为t为参数,22,所以直线l 的方程为y=377x-24、2018全国,22在直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为(t为参数)(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率解(1)曲线C的直角坐标方程为1.当cos0时,l的直角坐标方程为ytanx2tan,当cos0时,l的直角坐标方程为x1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(13cos2)t24(2cossin)t80.因为曲线C截直线l所得线段的中点(1,2)在C内,所以有两个解,设为t1,t2,则t1t20.又由得t1t2,故2cossin0,于是直线l的斜率ktan2.7