ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:93.50KB ,
资源ID:112994      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-112994.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题4 动态几何问题 2020中考数学专题复习(针对训练) 题型3)为本站会员(x**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题4 动态几何问题 2020中考数学专题复习(针对训练) 题型3

1、第二部分专题四题型三1如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处第1题图(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC的中点,BC26,tanB,求EF的长(1)证明:如答图1.平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,EAEC,12.四边形ABCD为平行四边形,ADBC,23,13,AEAF,AFCE.AFCE,四边形AECF为平行四边形AEAF,四边形AECF为菱形第1题答图(2)解:如答图2,连接CF,过点E作EHAB于点H.E为BC的中点,BC26,BEEC13.四边形AECF为菱形,AEAFCE13,AFBE,四

2、边形ABEF为平行四边形,EFAB.EAEB,EHAB,AHBH.在RtBEH中,tanB,设EH12x,BH5x,则BE13x,13x13,解得x1,BH5,AB2BH10,EF10.2在ABC中,C90,ACBC8.在边AB,AC上分别取点D,E,连接DE,将ADE沿DE翻折得ADE,且点A恰好落在ABC的边上第2题图(1)如图1,点A在边AB上,若BA2,求AD的长;(2)如图2,点A在边AC上,连接BA,若BA平分ABC,求折痕DE的长;(3)如图3,点A在边BC上,当ADE为等腰三角形时,求其腰长解:(1)在RtABC中,ACBC8,AB8.BA2,AAABBA6.ADDA,AD3.

3、(2)C90,ACBC8,A45.由折叠的性质可知,ADAE45,ADA90,即ADAB.BA平分ABC,ACBC,ADAB,ACAD.ADAD,ACADAD.设ACADADx,则AAx,xx8,x8(1),AA168,DEAA84.(3)当ADAE时,设ADAEa,则CECAa,故aa8,解得a168,ADAE168;当DEDA时,EDAB,此时点A与点B重合,ADDEAB4;当EDEA时,DEAC,此时点A与点C重合,DEAEAC4.综上所述,当ADE为等腰三角形时,其腰长为168或4或4.3已知,在矩形ABCD中,AB4,BC3,点M,N分别在边AB,CD上,直线MN交矩形对角线AC于点

4、E,将AME沿直线MN翻折,点A落在点P处,且点P在射线CB上(1)如图,当EPBC时求证:CNCE;求CN的长(2)当CP最大时,求MN的长第3题图(1)证明:将AME沿直线MN翻折,点A落在点P处,AEMPEM,AEPE.四边形ABCD是矩形,ABC90,ABCD,ABBC.EPBC,ABEP,AMEPEM,AMEAEM,AMAE.ABCD,CNCE.解:设CNCEx.四边形ABCD是矩形,AB4,BC3,ABC90,AC5,PEAE5x.ABEP,即,解得x,CN.(2)解:由折叠的性质,得AEPE.由三角形的三边关系,得PECEPC,ACPC,PC5.当点E和点C重合时,PC最大为AC5.此时点C,N,E重合,PCBCBP5,BP2.由折叠的性质知,PMAM4BM,在RtPBM中,根据勾股定理,得PM2BM2BP2,(4BM)2BM24,解得BM.在RtBNM中,根据勾股定理,得MN.当CP最大时,MN的长为.