1、2019-2020学年广东省茂名市高州市九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1下列说法中,错误的是A菱形的对角线互相垂直平分B正方形的对角线互相垂直平分且相等C矩形的对角线相等且平分D平行四边形的对角线相等且垂直2用公式法解时,先求出、的值,则、依次为A,3,1B1,3,1C,3,D1,3小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为ABC1D4若,是成比例线段,其中,则等于A8 BC4 D5菱形的边长是,一条对角线的长是,则另一条对角线的长约是AB1 CD6用配方法解一元二次方程,原方程可变形为A
2、BCD7如图所示,小明、小刚利用两个转盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则A公平B对小明有利C对小刚有利D公平性不可预测8如图,在中,则的长为A1B2C3D49如图,在一幅矩形风景画外面的四周镶一条金色纸边,制成一幅矩形挂图,整个挂图的长,宽如图所示,如果风景画的面积是设金色纸边的宽为,那么满足的方程是ABCD10已知,且,则的值为A6B5C4D3二、细心填一填(本大题共6小题每小题4分,共24分11如图,在平行四边形中,添加一个条件使平行四边形是菱形12方程的判别式是 ,求根公式是 13一个不透明的袋子中装有黑、白小球各两个,这些小球除颜
3、色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 14已知线段的长为10米,是的黄金分割点,则的长米(精确到0.01米)15王老师假期中去参加高中同学聚会,聚会时,所有到会的同学都互相握了一次手,王老师发现共握手435次,则参加聚会的同学共有多少人?设参加聚会的同学共有人,则根据题意,可列方程:16如图,、是菱形的边、的中点,是菱形的对角线上的动点,若,则的最小值是三、用心做一做(本大题共3个小题,每小题6分,共18分17如图,在菱形中,求证:18解方程:(1)(2)19如图,点在的边上,且(1)作的平分线,交于点(用尺规作图法,保留
4、作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线与直线的位置关系(不要求证明)四、沉着冷静缜密思考(本大题共3个小题,每小题7分,共21分)20已知是关于的一元二次方程的一个根,求的值和方程的另一个根21如图:在平行四边形中,是延长线上点,交于点(1)求证:;(2)若,求的长度?22商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同(1)若他去买一瓶饮料,则他买到奶汁的概率是 ;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率五、灵动智慧,超越自我(本大题共3小题每小题
5、9分共27分)23已知:如图,在中,是的中点,是线段延长线上一点,过点作的平行线与线段的延长线交于点,连接,(1)求证:;(2)若,试判断四边形是什么样的四边形,并证明你的结论24某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件(1)若商场每件降价4元,问商场每天可盈利多少元(2)若商场平均每天要盈利1200元,且让顾客尽可能多得实惠,每件衬衫应降价多少元(3)要使商场平均每天盈利1600元,可能吗?请说明理由25如图,在正方形中,为边上的点,点在边上,且,(
6、1)求证:;(2)若,延长交的延长线于点,求的长2019-2020学年广东省茂名市高州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1下列说法中,错误的是A菱形的对角线互相垂直平分B正方形的对角线互相垂直平分且相等C矩形的对角线相等且平分D平行四边形的对角线相等且垂直【解答】解:、菱形的对角线互相垂直,且互相平分,此选项正确;、正方形的对角线相等,且互相平分、垂直,正确;、矩形的对角线相等,且互相平分,此选项正确;、平行四边形的对角线不一定相等,但是互相平分,此选项错误故选:2用公式法解时,先求出、的值,则、依次为A,3,1B1,3,1C,3,
7、D1,【解答】解:将方程整理为一般形式为,可得二次项系数,一次项系数,常数项为故选:3小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为ABC1D【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是故选:4若,是成比例线段,其中,则等于A8 BC4 D【解答】解:因为,是成比例线段,可得:,故选:5菱形的边长是,一条对角线的长是,则另一条对角线的长约是AB1 CD【解答】解:如图,设,四边形是菱形,故选:6用配方法解一元二次方程,原方程可变形为ABCD【解答】解:,即,故选:7如图所示,小明、小刚利用两个转
8、盘进行游戏,规则为小明将两个转盘各转一次,如配成紫色(红与蓝),小明胜,否则小刚胜,此规则A公平B对小明有利C对小刚有利D公平性不可预测【解答】解:如图:根据树形图可知:所有等可能的情况有8种,其中配成紫色(红与蓝)的有3种,所以,所以此规则对小刚有利故选:8如图,在中,则的长为A1B2C3D4【解答】解:,即,解得:,故选:9如图,在一幅矩形风景画外面的四周镶一条金色纸边,制成一幅矩形挂图,整个挂图的长,宽如图所示,如果风景画的面积是设金色纸边的宽为,那么满足的方程是ABCD【解答】解:由题意得:,故选:10已知,且,则的值为A6B5C4D3【解答】解:,又将上式变形得:,设,由可得:,可得
9、:,故选:二、细心填一填(本大题共6小题每小题4分,共24分11如图,在平行四边形中,添加一个条件或使平行四边形是菱形【解答】解:当或时,四边形是菱形故答案为或12方程的判别式是,求根公式是 【解答】解:方程的判别式是,求根公式为13一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为【解答】解:列表得, 黑1 黑2 白1 白2黑1黑1黑1黑1黑2 黑1白1黑1白2黑2黑2黑1黑2黑2黑2白1黑2白2白1白1黑1白1黑2白1白1白1白2白2白2黑1白2黑2白2白1白2白2由表格可知,不放
10、回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,两次摸出的小球都是白球的概率为:,故答案为:14已知线段的长为10米,是的黄金分割点,则的长6.18米(精确到0.01米)【解答】解:设为米,根据题意,得整理,得解得,(不符合题意,舍去)经检验是原方程的根,的长为6.18米故答案为6.1815王老师假期中去参加高中同学聚会,聚会时,所有到会的同学都互相握了一次手,王老师发现共握手435次,则参加聚会的同学共有多少人?设参加聚会的同学共有人,则根据题意,可列方程:【解答】解:设参加聚会的同学共有人,依题意,得:故答案为:16如图,、是菱形的边、的中点,是菱形的对角线上的动点
11、,若,则的最小值是5【解答】解:,作点关于的对称点,连接交于,此时有最小值,最小值为的长菱形关于对称,、是菱形的边、的中点是的中点,四边形是平行四边形,即的最小值为5故答案为5三、用心做一做(本大题共3个小题,每小题6分,共18分17如图,在菱形中,求证:【解答】证明:四边形为菱形,又,即在和中18解方程:(1)(2)【解答】解:(1),则或,解得或;(2),即,解得或19如图,点在的边上,且(1)作的平分线,交于点(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线与直线的位置关系(不要求证明)【解答】解:(1)如图所示:(2)平分,四、沉着冷静缜密思考(本大题共3
12、个小题,每小题7分,共21分)20已知是关于的一元二次方程的一个根,求的值和方程的另一个根【解答】解:是方程的根,设另一个根为,则,的值是4,另一个根是21如图:在平行四边形中,是延长线上点,交于点(1)求证:;(2)若,求的长度?【解答】(1)证明:在平行四边形中,(2)解:由(1)得:,即,解得:22商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率【解答】解:(1)商店只有雪碧、可
13、乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;(2)画树状图得:共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,他恰好买到雪碧和奶汁的概率为:五、灵动智慧,超越自我(本大题共3小题每小题9分共27分)23已知:如图,在中,是的中点,是线段延长线上一点,过点作的平行线与线段的延长线交于点,连接,(1)求证:;(2)若,试判断四边形是什么样的四边形,并证明你的结论【解答】(1)证明:在和中,又是的中点,(2)解:若,则四边形是矩形证明:由(1)知:,四边形是平行四边形又,平行四边形是矩形24
14、某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件(1)若商场每件降价4元,问商场每天可盈利多少元(2)若商场平均每天要盈利1200元,且让顾客尽可能多得实惠,每件衬衫应降价多少元(3)要使商场平均每天盈利1600元,可能吗?请说明理由【解答】解:(1)因为每件衬衫每降价1元,商场平均每天可多售出2件,所以若商场每件降价4元,商场平均每天可多售出(件,每天共盈利(元答:若商场每件降价4元,问商场每天可盈利1008元;(2)设每件衬衫应降价元,则平均每天可销售件,根据题意得:,整理得:,解得:,要扩大销售量,减少库存,答:每件衬衫应降价20元(2)不可能,理由如下:根据题意得:,整理得:,该方程无实数根,商城平均每天不可能盈利1600元25如图,在正方形中,为边上的点,点在边上,且,(1)求证:;(2)若,延长交的延长线于点,求的长【解答】(1)证明:四边形为正方形,;(2)解:,即,解得:,即,