1、2019-2020学年浙江省宁波市鄞州区七年级(上)期中数学试卷一精心选一选:(每题3分,共30分)1(3分)2019的绝对值是()A2019B2019CD2(3分)在下列选项中,具有相反意义的量是()A胜2局与负3局B盈利5万元与支出6万元C气温升高3与气温为3D向东行20米和向南行30米3(3分)下列运算正确的是()ABCD4(3分)有四包真空小包装火腿,每包以标准克数(300克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A+3B3C+2D+45(3分)某地某天的最高气温是8,最低气温是2,则该地这一天的温差是()A10B6C
2、6D106(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面已知月球与地球之间的平均距离约为384000km,把384000用科学记数法可以表示为()A38.4104B3.84105C0.384106D3.841067(3分)a的5倍与b的和的平方用代数式表示为()A(5a+b)2B5a+b2C5a2+b2D5(a+b)28(3分)下列说法正确的是()a的相反数是a;0的倒数是0;最大的负整数1;绝对值等于本身的数只有0ABCD9(3分)无论x取什么值,下列代数式中,值一定是正数的是()Ax+1Bx2C|x+1|D2x2+110(3分)
3、a是不为2的有理数,我们把称为a的“哈利数”如:3的“哈利数”是2,2的“哈利数”是,已知a13,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,依此类推,则a2019()A3B2CD二.细心填一填:(每题3分,共30分)11(3分)1的立方根是 12(3分)比较大小: (用“或或”填空)13(3分)在4,0,3.14159,0.101001(每两个1之间多个0)这几个数中无理数的个数有 个14(3分)近似数1.02万表示精确到 位15(3分)在数轴上与3距离等于4个单位长度的点表示的数是 16(3分
4、)已知a、b互为相反数,c、d互为倒数,则a+bcd 17(3分)(a4)2+|3b|0,则ab 18(3分)小明组织同学去看电影我和我的祖国,电影票原价每张x元,活动期间打八折,他们共花了1200元,则电影票共买了 张(用含x的代数式表示)19(3分)若a24,b29,且ab0,则ab的值为 20(3分)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为 三.用心解一解:(共40分)21(6分)画出数轴,在数轴上表示下列各数,并用“”连接+5,(3.5),0,|,+(4)22(12分)计算题6(+3)
5、(7)+(2)(+)22|(10)2120182(3)223(4分)当a6,b时,求下列代数式的值(1)2ab;(2)a2+2ab+b224(4分)规定一种运算aba2ab1,如:计算23222314613请你根据上面的规定试求(52)的值25(6分)粮库6天内粮食进出库的吨数如下(“+”表示进库“”表示出库):+25,+8,12,+34,36,22(1)经过这6天,粮库里的粮食是增多还是减少了?通过计算说明(2)经过这6天,仓库管理员结算发现库里还存480吨粮,那么6天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?26(8分)从2开始,连续的偶数相加,它们和
6、的情况如下表:加数的个数nS121222+462332+4+6123442+4+6+8204552+4+6+8+103056(1)若n10时,则S的值为 (2)根据表中的规律猜想:用n的式子表示S的公式为:S2+4+6+8+2n (3)根据上题的规律计算1+2+3+4+5+999+1000的值2019-2020学年浙江省宁波市鄞州区七年级(上)期中数学试卷参考答案与试题解析一精心选一选:(每题3分,共30分)1(3分)2019的绝对值是()A2019B2019CD【分析】直接利用绝对值的定义进而得出答案【解答】解:2019的绝对值是:2019故选:A【点评】此题主要
7、考查了绝对值,正确把握绝对值的定义是解题关键2(3分)在下列选项中,具有相反意义的量是()A胜2局与负3局B盈利5万元与支出6万元C气温升高3与气温为3D向东行20米和向南行30米【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示“正”和“负”相对,本题收入与支出具有相反意义【解答】解:A、胜2局与负3局是具有相反意义,符合题意,此选项正确;B、盈利5万元与支出6万元不具有相反意义,不符合题意,此选项错误;C、气温升高3与气温为3,不符合题意,此选项错误,D、向东行20米和向南行30米不具有相反意义,不符合题意,此选项错误,故选:A【点评】此题考查了正数与负数,解题关键是
8、理解“正”和“负”的相对性,确定一对具有相反意义的量3(3分)下列运算正确的是()ABCD【分析】根据立方根和算术平方根的定义即可得到结论【解答】解:A、3,故符合题意;B、3,故不符合题意;C、3,故不符合题意;D、3,故不符合题意,故选:A【点评】本题考查了立方根,算术平方根,熟记定义是解题的关键4(3分)有四包真空小包装火腿,每包以标准克数(300克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A+3B3C+2D+4【分析】实际克数最接近标准克数的是绝对值最小的那个数【解答】解:A、+3的绝对值是3;B、3的绝对值是3;C、2
9、3的绝对值是2;D、+4的绝对值是4C选项的绝对值最小故选:C【点评】本题考查了正数和负数,有理数的大小比较法则5(3分)某地某天的最高气温是8,最低气温是2,则该地这一天的温差是()A10B6C6D10【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解【解答】解:8(2)8+210()故选:D【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键6(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面已知月球与地球之间的平均距离约为384000k
10、m,把384000用科学记数法可以表示为()A38.4104B3.84105C0.384106D3.84106【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:3840003.84105,故选:B【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7(3分)a的5倍与b的和的平方用代数式表示为()A(5a+b)2B5a+b2C5a2+b
11、2D5(a+b)2【分析】根据题意,可以用代数式表示出a的5倍与b的和的平方,本题得以解决【解答】解:由题意可得,a的5倍与b的和的平方用代数式表示为:(5a+b)2,故选:A【点评】本题考查列代数式,解答本题的关键是明确题意,写出相应的代数式8(3分)下列说法正确的是()a的相反数是a;0的倒数是0;最大的负整数1;绝对值等于本身的数只有0ABCD【分析】利用有理数,正数与负数,相反数,绝对值,以及倒数的性质判断即可【解答】解:a的相反数是a,正确,符合题意;0没有倒数,错误,不符合题意;最大的负整数是1,正确,故符合题意;绝对值等于本身的数有0和正数,错误,不符合题意故选:C【点评】此题考
12、查了有理数,正数与负数,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键9(3分)无论x取什么值,下列代数式中,值一定是正数的是()Ax+1Bx2C|x+1|D2x2+1【分析】讨论每个选项后,作出判断注意平方数和绝对值都可是非负数【解答】解:A、当x1时,代数式x+1的值为0,不符合题意;B、当x0时,代数式x2的值为0,0不是正数,不符合题意;C、当x1时,代数式|x+1|的值为0,0不是正数,所以不符合题意;D、无论x是何值,代数式2x2+1的值都是正数故选:D【点评】本题主要考查代数式的求值,注意平方数和绝对值都可以为0,也可以为正数10(3分)a是不为2的有理数,我们把称为
13、a的“哈利数”如:3的“哈利数”是2,2的“哈利数”是,已知a13,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,依此类推,则a2019()A3B2CD【分析】分别求出数列的前5个数得出该数列每4个数为一周期循环,据此可得答案【解答】解:a13,a22,a3,a4,a53,该数列每4个数为一周期循环,201945043,a2019a3,故选:C【点评】本题主要考查数字的变换规律,根据题意得出该数列每4个数为一周期循环是关键二.细心填一填:(每题3分,共30分)11(3分)1的立方根是1【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可【解答】解:
14、1的立方等于1,1的立方根等于1故答案为1【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同12(3分)比较大小:(用“或或”填空)【分析】根据两个负数比较大小,绝对值大的反而小,即可得出答案【解答】解:,;故答案为:【点评】此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键13(3分)在4,0,3.14159,0.101001(每两个1之间多个0)这几个数中无理数的个数有3个【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可【解答
15、】解:4,0是整数,属于有理数;是分数,属于有理数;3.14159是有限小数,属于有理数;无理数有:,0.101001(每两个1之间多个0)共3个故答案为:3【点评】本题考查了对无理数的定义的应用,能理解无理数的定义是解此题的关键,注意:无理数包括三方面的数:含的,开方开不尽的根式,一些有规律的数14(3分)近似数1.02万表示精确到百位【分析】近似数1.02万表示精确到0.01万位【解答】解:近似数1.02万表示精确到百位故答案为百【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示一般有,精确到哪一位,保留几个有效数字等说法15(3分)在数轴上与3距离等于4个单位
16、长度的点表示的数是7或1【分析】设此点所表示的数为x,则|3x|4,求出x的值即可【解答】解:设此点所表示的数为x,则|3x|4,当3x0时,原式3x4,x7;当3x0时,3+x4,x1故答案为:7或1【点评】本题考查的是数轴的特点,即数轴上两点之间的距离等于两点坐标之差的绝对值16(3分)已知a、b互为相反数,c、d互为倒数,则a+bcd1【分析】利用相反数,倒数的定义求出各自的值,代入计算即可求出值【解答】解:根据题意得:a+b0,cd1,则原式011,故答案为:1【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键17(3分)(a4)2+|3b|0,则ab64【分析】根据非
17、负数的性质列出算式,求出a、b的值,代入代数式计算即可【解答】解:由题意得,a40,3b0,解得,a4,b3,则ab4364,故答案为:64【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键18(3分)小明组织同学去看电影我和我的祖国,电影票原价每张x元,活动期间打八折,他们共花了1200元,则电影票共买了张(用含x的代数式表示)【分析】直接利用打折的意义利用总钱数除以单价得出答案【解答】解:由题意可得:12000.8x故答案为:【点评】此题主要考查了列代数式,正确理解打折的意义是解题关键19(3分)若a24,b29,且ab0,则ab的值为5或5【分析】根据有理
18、数的乘方求出a、b,再根据异号得负判断出a、b的对应情况,然后代入代数式进行计算即可得解【解答】解:a24,b29,a2,b3,ab0,a2时,b3,ab2(3)2+35,a2时,b3,ab235,所以,ab的值为5或5故答案为:5或5【点评】本题考查了有理数的乘方,有理数的乘方,有理数的减法运算,熟记运算法则并确定出a、b的对应情况是解题的关键20(3分)如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为33【分析】设两个正方形的边长是x、y(xy),得出方程x24,y29,求出x2,y3,代入阴影部分的面积是(yx)x求出即可【解答】解:设两个正方形的边长是x、y(x
19、y),则x23,y29,x,y3,则阴影部分的面积是(yx)x(3)33,故答案为:33【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力三.用心解一解:(共40分)21(6分)画出数轴,在数轴上表示下列各数,并用“”连接+5,(3.5),0,|,+(4)【分析】首先在数轴上表示各数,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“”号把它们连接起来即可【解答】解:如图所示:【点评】此题主要考查了有理数的比较大小,关键是正确在数轴上表示各数22(12分)计算题6(+3)(7)+(2)(+)22|(10)2120182(3)2【分析】直接利用有理数的加减运算法则计算得出答案
20、;直接利用有理数的乘法分配律计算得出答案;直接利用有理数的混合运算法则计算得出答案;直接利用有理数的混合运算法则计算得出答案【解答】解:原式63+728;原式60+60+6045+35+5040;原式4410025;原式1(29)【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键23(4分)当a6,b时,求下列代数式的值(1)2ab;(2)a2+2ab+b2【分析】(1)把a与b的值代入原式计算即可求出值;(2)原式利用完全平方公式化简,把a与b的值代入计算即可求出值【解答】解:(1)a6,b,原式26()8;(2)a6,b,原式(a+b)2(6)2【点评】此题考查了代数式
21、求值,熟练掌握运算法则是解本题的关键24(4分)规定一种运算aba2ab1,如:计算23222314613请你根据上面的规定试求(52)的值【分析】原式利用题中的新定义计算即可求出值【解答】解:根据题中的新定义得:原式(25101)(14)71【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键25(6分)粮库6天内粮食进出库的吨数如下(“+”表示进库“”表示出库):+25,+8,12,+34,36,22(1)经过这6天,粮库里的粮食是增多还是减少了?通过计算说明(2)经过这6天,仓库管理员结算发现库里还存480吨粮,那么6天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,
22、那么这6天要付多少装卸费?【分析】(1)根据有理数的加法,可得答案;(2)根据剩余的量加上减少的量,可得答案;(3)根据装卸单价乘以装卸的数量,可得答案【解答】解:(1)25+812+3436223(吨)答:粮库里的粮食减少了3吨(2)480+3483(吨)答:6天前库里存粮483吨(3)(25+8+12+34+36+22)5685(元)答:运费一共685元【点评】本题考查了正数和负数,注意计算装卸费时要求每次的绝对值26(8分)从2开始,连续的偶数相加,它们和的情况如下表:加数的个数nS121222+462332+4+6123442+4+6+8204552+4+6+8+103056(1)若n
23、10时,则S的值为110(2)根据表中的规律猜想:用n的式子表示S的公式为:S2+4+6+8+2nn(n+1)(3)根据上题的规律计算1+2+3+4+5+999+1000的值【分析】(1)根据表中的规律发现:第n个式子的和是n(n+1)则当n10时,S1011110;(2)根据特殊的式子即可发现规律;(3)结合上述规律,把原式乘2,计算出结果再除以2即可计算【解答】解:(1)若n10时,S1011110;(2)S2+4+6+8+2nn(n+1);(3)设P1+2+3+4+5+999+1000,则有2P2+4+6+8+10+1998+2000100010011001000因此P10010002500500【点评】此题考查数字的变化规律,注意根据所给的具体式子观察结果和数据的个数之间的关系