1、2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数当x1f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调
2、性,区间D叫做yf(x)的单调区间2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M(3)对于任意的xI,都有f(x)M;(4)存在x0I,使得f(x0)M结论M为最大值M为最小值概念方法微思考1在判断函数的单调性时,你还知道哪些等价结论?提示对x1,x2D,0f(x)在D上是增函数,减函数类似2写出对勾函数yx(a0)的增区间提示(,和,)题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若定义在R上的函数f(x),有f(1)f(3),则函数f(x)在R上为增函数()(2)函数yf(x
3、)在1,)上是增函数,则函数的单调递增区间是1,)()(3)函数y的单调递减区间是(,0)(0,)()(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数()(5)所有的单调函数都有最值()题组二教材改编2函数f(x)x22x的单调递增区间是_答案1,)(或(1,)3函数y在2,3上的最大值是_答案24若函数f(x)x22mx1在2,)上是增函数,则实数m的取值范围是_答案(,2解析由题意知,2,)m,),m2.题组三易错自纠5函数y (x24)的单调递减区间为_答案(2,)6若函数f(x)|xa|1的增区间是2,),则a_.答案2解析f(x)|xa|1的单调递
4、增区间是a,),a2.7函数yf(x)是定义在2,2上的减函数,且f(a1)f(2a),则实数a的取值范围是_答案1,1)解析由条件知解得1a1.8函数f(x)的最大值为_答案2解析当x1时,函数f(x)为减函数,所以f(x)在x1处取得最大值,为f(1)1;当x0,解得x4或x2,所以(4,)为函数yx22x8的一个单调递增区间根据复合函数的单调性可知,函数f(x)ln(x22x8)的单调递增区间为(4,)(2)函数yx22|x|3的单调递减区间是_答案1,0,1,)解析由题意知,当x0时,yx22x3(x1)24;当x0时,yx22x3(x1)24,二次函数的图象如图由图象可知,函数yx2
5、2|x|3的单调递减区间为1,0,1,)命题点2讨论函数的单调性例2判断并证明函数f(x)ax2(其中1a3)在1,2上的单调性解函数f(x)ax2(1a3)在1,2上单调递增证明:设1x1x22,则f(x2)f(x1)axax(x2x1),由1x10,2x1x24,1x1x24,1.又因为1a3,所以2a(x1x2)0,从而f(x2)f(x1)0,即f(x2)f(x1),故当a(1,3)时,f(x)在1,2上单调递增引申探究如何用导数法求解本例?解f(x)2ax,因为1x2,所以1x38,又1a0,所以f(x)0,所以函数f(x)ax2(其中1a3)在1,2上是增函数思维升华确定函数单调性的
6、方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“”连接跟踪训练1(1)下列函数中,满足“x1,x2(0,)且x1x2,(x1x2)f(x1)f(x2)0”的是()Af(x)2xBf(x)|x1|Cf(x)xDf(x)ln(x1)答案C解析由(x1x2)f(x1)f(x2)0,即a1,因此g(x)的单调递减区间就是y|x2|的单调递减区间(,2(3)函数f(x)|x2|x的单调递减区间是_答案1,2解析f(x)画出f(x)图象,由图知f(x)的单调递减区间是1,2题型二函数的最值1函数
7、y的值域为_答案1,1)解析由y,可得x2.由x20,知0,解得1yx11时,f(x2)f(x1)(x2x1)abBcbaCacbDbac答案D解析根据已知可得函数f(x)的图象关于直线x1对称,且在(1,)上是减函数,因为aff,且2ac.命题点2解函数不等式例4(2018四川成都五校联考)设函数f(x)是奇函数,且在(0,)内是增函数,又f(3)0,则f(x)0的解集是()Ax|3x3Bx|x3或0x3Cx|x3Dx|3x0或0x3答案B解析f(x)是奇函数,f(3)0,f(3)f(3)0,解得f(3)0.函数f(x)在(0,)内是增函数,当0x3时,f(x)3时,f(x)0.函数f(x)
8、是奇函数,当3x0;当x3时,f(x)0.则不等式f(x)0的解集是x|0x3或x1)是增函数,故a1,所以a的取值范围为10,40成立,那么a的取值范围是_答案解析对任意x1x2,都有0,所以yf(x)在(,)上是增函数所以解得a2.故实数a的取值范围是.(2)已知函数f(x)是定义在区间0,)上的函数,且在该区间上单调递增,则满足f(2x1)f的x的取值范围是_答案解析因为函数f(x)是定义在区间0,)上的增函数,且满足f(2x1)f,所以02x1,解得xf(3)f(2) Bf()f(2)f(3)Cf()f(3)f(2) Df()f(2)f(3)f(2),即f()f(3)f(2)4已知函数
9、f(x)当x1x2时,0,则a的取值范围是()A.B.C.D.答案A解析当x1x2时,0,f(x)是R上的减函数f(x)00时,f(x)xa2a,当且仅当x1时取“”要满足f(0)是f(x)的最小值,需2af(0)a2,即a2a20,解得1a2.a的取值范围是0a2.故选D.6已知函数f(x)则“c1”是“函数f(x)在R上单调递增”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案A解析若函数f(x)在R上单调递增,则需log21c1,即c1.由于c1,即c1,但c1不能得出c1,所以“c1”是“函数f(x)在R上单调递增”的充分不必要条件7已知奇函数f(x)在R上是
10、增函数若af,bf,cf(20.8),则a,b,c的大小关系为_答案abc解析f(x)在R上是奇函数,afff(log25)又f(x)在R上是增函数,且log25log24.1log24220.8,f(log25)f(log24.1)f(20.8),abc.8如果函数f(x)ax22x3在区间(,4)上单调递增,则实数a的取值范围是_答案解析当a0时,f(x)2x3在定义域R上是单调递增的,故在(,4)上单调递增;当a0时,二次函数f(x)的对称轴为x,因为f(x)在(,4)上单调递增,所以a0,且4,解得a0且f(x)在(1,)上单调递减,求a的取值范围(1)证明当a2时,f(x).设x1x
11、20,x1x20,所以f(x1)f(x2)0,即f(x1)f(x2),所以f(x)在(,2)上单调递增(2)解设1x10,x2x10,所以要使f(x1)f(x2)0,只需(x1a)(x2a)0恒成立,所以a1.综上所述,00且方程ax2bx10中b24a(a1)24a(a1)20,a1.从而f(x)x22x1.F(x)(2)由(1)可知f(x)x22x1,g(x)f(x)kxx2(2k)x1,由g(x)在2,2上是单调函数,知2或2,得k2或k6.即实数k的取值范围为(,26,)13已知函数f(x)若f(2x2)f(x),则实数x的取值范围是()A(,1)(2,) B(,2)(1,)C(1,2
12、) D(2,1)答案D解析当x0时,两个表达式对应的函数值都为0,函数的图象是一条连续的曲线又当x0时,函数f(x)x3为增函数,当x0时,f(x)ln(x1)也是增函数,函数f(x)是定义在R上的增函数因此,不等式f(2x2)f(x)等价于2x2x,即x2x20,解得2xf(2ax)在a,a1上恒成立,则实数a的取值范围是_答案(,2)解析二次函数y1x24x3的对称轴是x2,该函数在(,0上单调递减,x24x33,同样可知函数y2x22x3在(0,)上单调递减,x22x3f(2ax)得到xa2ax,即2xa,2xa在a,a1上恒成立,2(a1)a,a2的解集为_答案解析由题意知,f(x)f
13、(x)2,f(2x1)f(2x)2可化为f(2x1)f(2x),又由题意知函数f(x)在R上单调递增,2x12x,x,原不等式的解集为.16已知定义在区间(0,)上的函数f(x)是增函数,f(1)0,f(3)1.(1)解不等式0f(x21)1;(2)若f(x)m22am1对所有x(0,3,a1,1恒成立,求实数m的取值范围解(1)由得x2或2x.原不等式的解集为(2,)(,2)(2)函数f(x)在(0,3上是增函数,f(x)在(0,3上的最大值为f(3)1,不等式f(x)m22am1对所有x(0,3,a1,1恒成立转化为1m22am1对所有a1,1恒成立,即m22am0对所有a1,1恒成立设g(a)2mam2,a1,1,需满足即解该不等式组,得m2或m2或m0,即实数m的取值范围为(,202,)14