ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:41.90KB ,
资源ID:107900      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107900.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何专题探究课五高考中解析几何问题的热点题型教案含解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何专题探究课五高考中解析几何问题的热点题型教案含解析

1、专题探究课五 高考中解析几何问题的热点题型1.(2015全国卷)在直角坐标系xOy中,曲线C:y与直线l:ykxa(a0)交于M,N两点,(1)当k0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPMOPN?说明理由.解(1)由题设可得M(2,a),N(2,a),或M(2,a),N(2,a).又y,故y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.故所求切线方程为xya0和xya0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(

2、x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将ykxa代入C的方程得x24kx4a0.故x1x24k,x1x24a.从而k1k2.当ba时,有k1k20,则直线PM的倾斜角与直线PN的倾斜角互补,故OPMOPN,所以点P(0,a)符合题意.2.(2016北京卷)已知椭圆C:1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.(1)解由题意知a2,b1.所以椭圆方程为y21,又c.所以椭圆离心率e.(2)证明设P点坐标为(x0,y0)

3、(x00,y00),则x4y4,由B点坐标(0,1)得直线PB方程为:y1(x0),令y0,得xN,从而|AN|2xN2,由A点坐标(2,0)得直线PA方程为y0(x2),令x0,得yM,从而|BM|1yM1,所以S四边形ABNM|AN|BM|2.即四边形ABNM的面积为定值2.3.已知中心在坐标原点,焦点在x轴上的椭圆过点P(2,),且它的离心率e.(1)求椭圆的标准方程;(2)与圆(x1)2y21相切的直线l:ykxt交椭圆于M,N两点,若椭圆上一点C满足,求实数的取值范围.解(1)设椭圆的标准方程为1(ab0),由已知得:解得所以椭圆的标准方程为1.(2)因为直线l:ykxt与圆(x1)

4、2y21相切,所以12k(t0),把ykxt代入1并整理得:(34k2)x28ktx(4t224)0,设M(x1,y1),N(x2,y2),则有x1x2,y1y2kx1tkx2tk(x1x2)2t,因为(x1x2,y1y2),所以C,又因为点C在椭圆上,所以,12,因为t20,所以11,所以022,所以的取值范围为(,0)(0,).4.已知椭圆C的方程为:x22y24.(1)求椭圆C的离心率;(2)设O为坐标原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值.解(1)由题意,椭圆C的标准方程为1,所以a24,b22,从而c2a2b22.因此a2,c.故椭圆C的离心率e

5、.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x00.因为OAOB,则0,所以tx02y00,解得t.又x2y4,所以|AB|2(x0t)2(y02)2(y02)2xy4x44(0x4)因为4(01)的上顶点为A,右焦点为F,直线AF与圆M:x2y26x2y70相切.(1)求椭圆C的方程;(2)若不过点A的动直线l与椭圆C相交于P,Q两点,且0,求证:直线l过定点,并求出该定点N的坐标.(1)解将圆M的一般方程x2y26x2y70化为标准方程为(x3)2(y1)23,圆M的圆心为M(3,1),半径r.由A(0,1),F(c,0)(c)得直线AF:y1,即xcyc0.由直线AF与

6、圆M相切,得.c或c(舍去).a,椭圆C的方程为y21.(2)证明由0,知APAQ,从而直线AP与坐标轴不垂直,由A(0,1)可设直线AP的方程为ykx1,直线AQ的方程为yx1(k0),将ykx1代入椭圆C的方程y21并整理得:(13k2)x26kx0,解得x0或x,因此P的坐标为,即.将上式中的k换成,得Q.直线l的方程为y,化简得直线l的方程为yx.因此直线l过定点N.6.(2015山东卷)平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:1,P为椭圆C上任意一点,过点P的直线ykxm交椭圆E于A,B两点,射线PO交椭圆E于

7、点Q.()求的值;()求ABQ面积的最大值.解(1)由题意知1.又,解得a24,b21.所以椭圆C的方程为y21.(2)由(1)知椭圆E的方程为1.()设P(x0,y0),由题意知Q(x0,y0).因为y1,又1,即1,所以2,即2.()设A(x1,y1),B(x2,y2).将ykxm代入椭圆E的方程,可得(14k2)x28kmx4m2160,由0,可得m2416k2,则有x1x2,x1x2.所以|x1x2|.因为直线ykxm与y轴交点的坐标为(0,m),所以OAB的面积S|m|x1x2|2.设t,将ykxm代入椭圆C的方程,可得(14k2)x28kmx4m240,由0,可得m214k2.由可知0t1,因此S22,故S2,当且仅当t1,即m214k2时取得最大值2.由()知,ABQ面积为3S,所以ABQ面积的最大值为6.6