ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:171.85KB ,
资源ID:107863      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107863.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(鲁京津琼专用2020版高考数学大一轮复习第四章三角函数解三角形4.2同角三角函数基本关系式及诱导公式教案含解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

鲁京津琼专用2020版高考数学大一轮复习第四章三角函数解三角形4.2同角三角函数基本关系式及诱导公式教案含解析

1、4.2同角三角函数基本关系式及诱导公式最新考纲1.理解同角三角函数的基本关系式:sin2xcos2x1,tan x2.借助单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式1同角三角函数的基本关系(1)平方关系:sin2cos21.(2)商数关系:tan.2三角函数的诱导公式公式一二三四五六角2k(kZ)正弦sinsinsinsincoscos余弦coscoscoscossinsin正切tantantantan口诀函数名不变,符号看象限函数名改变,符号看象限概念方法微思考1使用平方关系求三角函数值时,怎样确定三角函数值的符号?提示根据角所在象限确定三角函数值的符号2诱导公式记忆口诀:“奇

2、变偶不变,符号看象限”中的奇、偶是何意义?提示所有诱导公式均可看作k(kZ)和的三角函数值之间的关系,口诀中的奇、偶指的是此处的k是奇数还是偶数题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若,为锐角,则sin2cos21.()(2)若R,则tan恒成立()(3)sin()sin成立的条件是为锐角()(4)若sin(k)(kZ),则sin.()题组二教材改编2若sin,则tan.答案解析,cos,tan.3已知tan2,则的值为答案3解析原式3.4化简sin()cos(2)的结果为答案sin2解析原式(sin)cossin2.题组三易错自纠5已知sincos,则sinco

3、s的值为答案解析sincos,sincos.又(sincos)212sincos,sincos.6(2018成都诊断)已知为锐角,cos,则cos().答案解析cossin,且为锐角,cos,cos()cos.7已知cos,0,则的值为答案解析0,sin,tan2.则.题型一同角三角函数基本关系式的应用1已知是第四象限角,sin,则tan等于()AB.CD.答案C解析因为是第四象限角,sin,所以cos,故tan.2若tan,则cos22sin2等于()A.B.C1D.答案A解析tan,则cos22sin2.3若角的终边落在第三象限,则的值为()A3B3C1D1答案B解析由角的终边落在第三象限

4、,得sin0,cos0,故原式123.4已知sincos,(0,),则tan等于()A1BC.D1答案A解析由消去sin,得2cos22cos10,即(cos1)20,cos.又(0,),tantan1.思维升华 (1)利用sin2cos21可实现正弦、余弦的互化,开方时要根据角所在象限确定符号;利用tan可以实现角的弦切互化(2)应用公式时注意方程思想的应用:对于sincos,sincos,sincos这三个式子,利用(sincos)212sincos,可以知一求二(3)注意公式逆用及变形应用:1sin2cos2,sin21cos2,cos21sin2.题型二诱导公式的应用例1(1)已知A(

5、kZ),则A的值构成的集合是()A1,1,2,2B1,1C2,2D1,1,0,2,2答案C解析当k为偶数时,A2;当k为奇数时,A2.(2)(2018太原质检)化简:.答案1解析原式1.思维升华(1)诱导公式的两个应用求值:负化正,大化小,化到锐角为终了化简:统一角,统一名,同角名少为终了(2)含2整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2的整数倍的三角函数式中可直接将2的整数倍去掉后再进行运算如cos(5)cos()cos.跟踪训练1(1)已知角终边上一点P(4,3),则的值为_答案解析原式tan,根据三角函数的定义得tan.(2)已知f()(sin0,12sin0),则f

6、.答案解析f(),f.题型三同角三角函数基本关系式和诱导公式的综合应用例2(1)(2018广州模拟)已知cos,且,则cos等于()A.B.CD答案D解析因为,所以cossinsin.因为,所以0,所以,所以sin.(2)已知x0,sin(x)cosx.求sinxcosx的值;求的值解由已知,得sinxcosx,两边平方得sin2x2sinxcosxcos2x,整理得2sinxcosx.(sinxcosx)212sinxcosx,由x0知,sinx0,又sinxcosx0,sinxcosx0,故sinxcosx.引申探究本例(2)中若将条件“x0”改为“0x”,求sinxcosx的值解若0x0

7、,cosx0,故sinxcosx.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形(2)注意角的范围对三角函数符号的影响跟踪训练2 (1)(2018唐山模拟)已知角的终边在第三象限,tan 22,则sin2sin(3)cos(2)cos2等于()AB.CD.答案D解析由tan22可得tan22,即tan2tan0,解得tan或tan.又角的终边在第三象限,故tan,故sin2sin(3)cos(2)cos2sin2sincoscos2.(2)已知函数f(x)asin(x)bcos(x),且f(4)3,则f(2019)的值为()A1

8、B1C3D3答案D解析f(4)asin(4)bcos(4)asinbcos3,f(2019)asin(2019)bcos(2019)asin()bcos()(asinbcos)3.1已知是第四象限角,tan,则sin等于()A.BC.D答案D解析因为tan,所以,所以cossin,代入sin2cos21,解得sin,又是第四象限角,所以sin.2已知为锐角,且sin,则cos()等于()AB.CD.答案A解析为锐角,cos,cos()cos.3(2018大同质检)已知sin()cos(2),|,则等于()ABC.D.答案D解析sin()cos(2),sincos,tan.又|0,所以原式sin

9、cos.故选A.8(2018湖南省岳阳一中模拟)已知sinxcosx,x(0,),则tanx等于()AB.C.D答案D解析由题意可知sinxcosx,x(0,),则(sinxcosx)2,因为sin2xcos2x1,所以2sinxcosx,即,得tanx或tanx.当tanx时,sinxcosx0,所以A为锐角,由tanA以及sin2Acos2A1,可求得sinA.10(2018唐山检测)sincostan的值是答案解析原式sincostan().11已知0,若cossin,则的值为答案解析因为cossin,所以12sincos,即2sincos.所以(sincos)212sincos1.又0

10、0.所以sincos.由得sin,cos,tan2,所以.12已知kZ,化简:.解当k2n(nZ)时,原式1;当k2n1(nZ)时,原式1.综上,原式1.13若sin,cos是方程4x22mxm0的两根,则m的值为()A1B1C1D1答案B解析由题意知sincos,sincos,又(sincos)212sincos,1,解得m1,又4m216m0,m0或m4,m1.14已知A,B为ABC的两个内角,若sin(2A)sin(2B),cos Acos(B),则B.答案解析由已知得化简得2cos2A1,即cosA.当cosA时,cosB,又A,B是三角形内角,B;当cosA时,cosB,又A,B是三角形内角,A,B,不合题意,舍去,综上可知B.15已知,且sin()cos.cos()cos(),求,.解由已知可得sin23cos22,sin2,又,sin,.将代入中得sin,又,综上,.16已知cossin1.求cos2cos1的取值范围解由已知得cos1sin.1cos1,11sin1,又1sin1,可得0sin1,cos2cos1sin21sin1sin2sin2.(*)又0sin1,当sin时,(*)式取得最小值,当sin0或sin1时,(*)式取得最大值0,故所求范围是.13