ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:136.68KB ,
资源ID:107581      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107581.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏专用2020版高考数学大一轮复习第九章平面解析几何9.6椭圆第2课时直线与椭圆教案含解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

江苏专用2020版高考数学大一轮复习第九章平面解析几何9.6椭圆第2课时直线与椭圆教案含解析

1、第2课时直线与椭圆题型一直线与椭圆的位置关系例1(2019徐州模拟)如图,在平面直角坐标系xOy中,椭圆C:1(ab0)的左、右焦点分别为F1,F2,点P(3,1)在椭圆上,PF1F2的面积为2.(1)求椭圆C的标准方程;(2)直线yxk与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值解(1)由条件可知1,2c1c2,又a2b2c2,所以a212,b24,所以椭圆的标准方程为1.(2)设A(x1,y1),B(x2,y2),由得4x26kx3k2120,解得x1,2,则x1x2,x1x2,y1y2(x1k)(x2k).因为以AB为直径的圆经过坐标原点,则x1x2y1y2k2

2、60,解得k,此时1200,满足条件因此k.思维升华研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点跟踪训练1(1)若直线ykx1与椭圆1总有公共点,则m的取值范围是_答案1,5)(5,)解析方法一由于直线ykx1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则00且m5,m1且m5.(2)(2018江苏十校联考)已知椭圆C:1(ab0)的左、右焦点分别为F1,F2,离心率为e.直线l:yexa与x轴、y轴分别交于A,B两点,M是直线l与椭圆C的

3、一个公共点,设e,则该椭圆的离心率e为_答案解析因为点A,B分别是直线l:yexa与x轴、y轴的交点,所以点A,B的坐标分别是,(0,a)由e化简得,x22cxc20,解得M(c,aec),由e得,e,即aecea,即e2e10,解得e或e(舍去)题型二弦长及中点弦问题命题点1弦长问题例2斜率为1的直线l与椭圆y21相交于A,B两点,则AB的最大值为_答案解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0,则x1,2,AB|x1x2|,当t0时,ABmax.命题点2中点弦问题例3已知P(1,1)为椭圆1内一定点,经过P引一条

4、弦,使此弦被P点平分,则此弦所在的直线方程为_答案x2y30解析易知此弦所在直线的斜率存在,所以设斜率为k,弦所在的直线与椭圆相交于A,B两点,设A(x1,y1),B(x2,y2),则1,1,得0,x1x22,y1y22,y1y20,k.此弦所在的直线方程为y1(x1),即x2y30.思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,求出两根,结合已知条件,解决相关问题涉及中点弦的问题时用“点差法”解决,往往会更简单(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则AB|x1x2|y1y2|(k为直线斜率)(3)利用公式计算直线被椭圆

5、截得的弦长是在方程有解的情况下进行的,不要忽略判别式跟踪训练2(1)已知椭圆1以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为_答案解析设弦的端点A(x1,y1),B(x2,y2),则x1x28,y1y24,两式相减,得0,所以,所以k.经检验,k满足题意(2)已知F1(1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线与椭圆C交于A,B两点,且AB3,则椭圆C的方程为_答案1解析设椭圆C的方程为1(ab0),则c1.因为过F2且垂直于x轴的直线与椭圆交于A,B两点,且AB3,所以,b2a2c2,所以a24,b2a2c2413,即椭圆C的方程为1.题型三椭圆与向量

6、等知识的综合例4已知椭圆C:1(ab0),e,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且(其中1)(1)求椭圆C的标准方程;(2)求实数的值解(1)由椭圆的焦距为2,知c1,又e,a2,故b2a2c23,椭圆C的标准方程为1.(2)由,可知A,B,F三点共线,设点A(x1,y1),B(x2,y2)若直线ABx轴,则x1x21,不符合题意;当AB所在直线l的斜率存在时,设l的方程为yk(x1)由消去y得(34k2)x28k2x4k2120.(*)(*)的判别式64k44(4k23)(4k212)144(k21)0.x1,2,x1x22,k2.x1,2.

7、又(1x1,y1),(x21,y2),即1x1(x21),又1,.思维升华一般地,在椭圆与向量等知识的综合问题中,平面向量只起“背景”或“结论”的作用,几乎都不会在向量的知识上设置障碍,所考查的核心内容仍然是解析几何的基本方法和基本思想跟踪训练3已知椭圆C的两个焦点分别为F1(1,0),F2(1,0),短轴的两个端点分别为B1,B2.(1)若F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程解(1)F1B1B2为等边三角形,则椭圆C的方程为3y21.(2)易知椭圆C的方程为y21,当直线l的斜率不存在时,其方程为x

8、1,不符合题意;当直线l的斜率存在时,设直线l的方程为yk(x1),由得(2k21)x24k2x2(k21)0,由已知得0,设P(x1,y1),Q(x2,y2),则x1,2,所以x1x2,x1x2,(x11,y1),(x21,y2),因为,所以0,即(x11)(x21)y1y2x1x2(x1x2)1k2(x11)(x21)(k21)x1x2(k21)(x1x2)k210,解得k2,即k,故直线l的方程为xy10或xy10.1若直线mxny4与O:x2y24没有交点,则过点P(m,n)的直线与椭圆1的交点个数是_答案2解析由题意知,2,即b0)的一条弦所在的直线方程是xy50,弦的中点坐标是M(

9、4,1),则椭圆的离心率是_答案解析设直线与椭圆交点为A(x1,y1),B(x2,y2),分别代入椭圆方程,由点差法可知yMxM,代入k1,M(4,1),解得,e.5(2018南京模拟)已知椭圆C:mx2y21(0m1),直线l:yx1.若椭圆C上总存在不同的两点A与B关于直线l对称,则椭圆C的离心率e的取值范围是_答案解析设AB的中点为P,由中点弦问题可知kABkOPm,kAB1,kOPm,联立直线l与直线OP可得P.由点P在椭圆内,则m22b0)的左、右焦点分别为F1,F2,焦距为2c.若直线y(xc)与椭圆的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_答案1解析直线y(x

10、c)过点F1(c,0),且倾斜角为60,所以MF1F260,从而MF2F130,所以MF1MF2.在RtMF1F2中,MF1c,MF2c,所以该椭圆的离心率e1.9已知椭圆C:1(ab0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连结AF,BF,若AB10,AF6,cosABF,则椭圆C的离心率e_.答案解析设椭圆的右焦点为F1,在ABF中,由余弦定理可解得BF8,所以ABF为直角三角形,且AFB90,又因为斜边AB的中点为O,所以OFc5,连结AF1,因为A,B关于原点对称,所以BFAF18,所以2a14,a7,所以离心率e.10已知直线MN过椭圆y21的左焦点F,与椭圆交于M,N

11、两点直线PQ过原点O与MN平行,且PQ与椭圆交于P,Q两点,则_.答案2解析不妨取直线MNx轴,椭圆y21的左焦点F(1,0),令x1,得y2,所以y,所以MN,此时PQ2b2,则2.11已知椭圆C的一个焦点为F1(2,0),相应准线为x8,离心率e.(1)求椭圆C的方程;(2)求过另一个焦点且倾斜角为45的直线截椭圆C所得的弦长解(1)设点P(x,y)为椭圆上一点,由统一定义得,两边同时平方得4(x2)2y2(8x)2,化简得1.故椭圆C的方程为1.(2)设椭圆的另一个焦点为F2(2,0),过F2且倾斜角为45的直线方程为yx2,与椭圆1联立消去y,得7x216x320.设直线与椭圆的交点为

12、A(x1,y1),B(x2,y2),则x1,2,x1x2,ABAF2BF2aex1aex22ae(x1x2)24(x1x2).12设椭圆1(ab0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若8,O为坐标原点,求OCD的面积解(1)过焦点且垂直于长轴的直线被椭圆截得的线段长为,所以.因为椭圆的离心率为,所以,又a2b2c2,可解得b,c1,a.所以椭圆的方程为1.(2)由(1)可知F(1,0),则直线CD的方程为yk(x1)联立消去y得(23k2)x26k2x3k2

13、60.设C(x1,y1),D(x2,y2),所以x1,2,则x1x2,x1x2.又A(,0),B(,0),所以(x1,y1)(x2,y2)(x2,y2)(x1,y1)62x1x22y1y262x1x22k2(x11)(x21)6(22k2)x1x22k2(x1x2)2k268,解得k.所以式化为2x23x0,x1,x20,所以|x1x2|.CD|x1x2|.而原点O到直线CD的距离为d,所以OCD的面积为SCDd.13正方形ABCD的四个顶点都在椭圆1上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是_答案解析设正方形的边长为2m,椭圆的焦点在正方形的内部,mc,又正方形ABCD的四个

14、顶点都在椭圆1上,1e2,即e43e210,e22,0eb0)短轴的端点为P(0,b),Q(0,b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA,PB的斜率之积等于,则点P到直线QM的距离为_答案b解析设A(x0,y0),则B点坐标为(x0,y0),则,即,由于1,则,故,则,不妨取M(a,0),则直线QM的方程为bxayab0,则点P到直线QM的距离db.15平行四边形ABCD内接于椭圆1,直线AB的斜率k12,则直线AD的斜率k2_.答案解析设AB的中点为G,则由椭圆的对称性知,O为平行四边形ABCD的对角线的交点,则GOAD.设A(x1,y1),B(x2,y2)

15、,则有两式相减得,整理得k12,即.又G,所以kOG,即k2.16过椭圆1(ab0)上的动点M作圆x2y2的两条切线,切点分别为P和Q,直线PQ与x轴和y轴的交点分别为E和F,求EOF面积的最小值解设M(x0,y0),P(x1,y1),Q(x2,y2),由题意知PQ斜率存在,且不为0,所以x0y00,则直线MP和MQ的方程分别为x1xy1y,x2xy2y.因为点M在MP和MQ上,所以有x1x0y1y0,x2x0y2y0,则P,Q两点的坐标满足方程x0xy0y,所以直线PQ的方程为x0xy0y,可得E和F,所以SEOFOEOF,因为b2ya2xa2b2,b2ya2x2ab|x0y0|,所以|x0y0|,所以SEOF,当且仅当b2ya2x时取“”,故EOF面积的最小值为.13