ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:283.72KB ,
资源ID:107294      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107294.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)

1、第3讲 空间点、直线、平面之间的位置关系基础达标1已知异面直线a,b分别在平面,内,且c,那么直线c一定()A与a,b都相交B只能与a,b中的一条相交C至少与a,b中的一条相交D与a,b都平行解析:选C.若c与a,b都不相交,则c与a,b都平行,根据公理4,知ab,与a,b异面矛盾2如图所示,平面平面l,A,B,ABlD,C,Cl,则平面ABC与平面的交线是()A直线ACB直线ABC直线CDD直线BC解析:选C.由题意知,Dl,l,所以D,又因为DAB,所以D平面ABC,所以点D在平面ABC与平面的交线上又因为C平面ABC,C,所以点C在平面与平面ABC的交线上,所以平面ABC平面CD.3已知

2、AB是平面的斜线段,A为斜足若点P在平面内运动,使得ABP的面积为定值,则动点P的轨迹是()A圆B椭圆C一条直线D两条平行直线解析:选B.如图,由于AB的长为定值,且ABP的面积也是定值,因此空间中点P到直线AB的距离也为定值,从而可以推知点P在空间的轨迹应是以AB为旋转轴的圆柱面,又点P在平面内,且AB与平面不垂直,故点P的轨迹应是该圆柱面被平面截出的椭圆4(2019瑞安四校联考)若平面平面,点A,C,B,D,则直线AC直线BD的充要条件是()AABCDBADCBCAB与CD相交DA,B,C,D四点共面解析:选D.因为平面平面,要使直线AC直线BD,则直线AC与BD是共面直线,即A,B,C,

3、D四点必须共面5如图,正三棱柱ABCA1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是()ABCD2解析:选B.如图,取AC中点G,连接FG,EG,则FGC1C,FGC1C;EGBC,EGBC,故EFG即为EF与C1C所成的角,在RtEFG中,cosEFG.6(2019台州模拟)如图所示,ABCDA1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()AA,M,O三点共线BA,M,O,A1不共面CA,M,C,O不共面DB,B1,O,M共面解析:选A.连接A1C1,AC(图略),则A1C

4、1AC,所以A1,C1,A,C四点共面,所以A1C平面ACC1A1.因为MA1C,所以M平面ACC1A1.又M平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上所以A,M,O三点共线7如图,正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为_(注:把你认为正确的结论的序号都填上)解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,故错误答案:8(2019金丽

5、衢十二校联考) 如图所示,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则当AC,BD满足条件_时,四边形EFGH为菱形,当AC,BD满足条件_时,四边形EFGH是正方形解析:易知EHBDFG,且EHBDFG,同理EFACHG,且EFACHG,显然四边形EFGH为平行四边形要使平行四边形EFGH为菱形需满足EFEH,即ACBD;要使四边形EFGH为正方形需满足EFEH且EFEH,即ACBD且ACBD.答案:ACBDACBD且ACBD9已知三棱锥ABCD中,ABCD,且直线AB与CD所成的角为60,点M,N分别是BC,AD的中点,则直线AB和MN所成的角为_解析:如图,

6、取AC的中点P,连接PM,PN,则PMAB,且PMAB,PNCD,且PNCD,所以MPN为AB与CD所成的角(或其补角),则MPN60或MPN120.因为PMAB,所以PMN是AB与MN所成的角(或其补角)若MPN60,因为ABCD,所以PMPN,则PMN是等边三角形,所以PMN60,即AB与MN所成的角为60.若MPN120,则易知PMN是等腰三角形,所以PMN30,即AB与MN所成的角为30.综上,直线AB和MN所成的角为60或30.答案:60或3010如图,已知平面四边形ABCD,ABBC3,CD1,AD,ADC90.沿直线AC将ACD翻折成ACD,直线AC与BD所成角的余弦的最大值是_

7、解析:作BEAC,BEAC,连接DE,则DBE为所求的角或其补角,作DNAC于点N,设M为AC的中点,连接BM,则BMAC,作NFBM交BE于F,连接DF,设DNF,因为DN,BMFN,所以DF25cos ,因为ACDN,ACFN,所以DFAC,所以DFBE,又BFMN,所以在RtDFB中,DB295cos ,所以cos DBE,当且仅当0时取“”答案:11. 如图,已知不共面的三条直线a、b、c相交于点P,Aa,Ba,Cb,Dc,求证:AD与BC是异面直线证明:假设AD与BC共面,所确定的平面为,那么点P、A、B、C、D都在平面内,所以直线a、b、c都在平面内,与已知条件a、b、c不共面矛盾

8、,假设不成立,所以AD与BC是异面直线12在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小解:(1)如图,连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1DB1C,从而B1C与AC所成的角就是AC与A1D所成的角因为AB1ACB1C,所以B1CA60.即A1D与AC所成的角为60.(2)连接BD,在正方体ABCDA1B1C1D1中,ACBD,ACA1C1.因为E,F分别为AB,AD的中点,所以EFBD,所以EFAC.所以EFA1C1.即A1C1与EF所成的角为90.能力提升1设A,B,C,D

9、是空间四个不同的点,在下列命题中,不正确的是()A若AC与BD共面,则AD与BC共面B若AC与BD是异面直线,则AD与BC是异面直线C若ABAC,DBDC,则ADBCD若ABAC,DBDC,则ADBC解析:选C.A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;C中,若ABAC,DBDC,AD不一定等于BC;D中,若ABAC,DBDC,可以证明ADBC.2(2019温州市高考数学模拟)棱长为2的正方体ABCDA1B1C1D1中,E为棱CC1的中点,点P,Q分别为平面A1B1C1D1和线段B1C上

10、的动点,则PEQ周长的最小值为()A2BCD2解析:选B.由题意,PEQ周长取得最小值时,P在B1C1上,在平面B1C1CB上,设E关于B1C的对称点为M,关于B1C1的对称点为N,则EM,EN2,MEN135,所以MN.3在正方体ABCDA1B1C1D1中,E,F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有_条解析:法一:如图,在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这三条异面直线都有交点,所以在空间中与这三条直线都相交的直线有无数条

11、法二:在A1D1上任取一点P,过点P与直线EF作一个平面,因为CD与平面不平行,所以它们相交,设它们交于点Q,连接PQ(图略),则PQ与EF必然相交,即PQ为所求直线由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交答案:无数4设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是_解析:构造四面体ABCD,使ABa,CD,ADACBCBD1,取CD的中点E,则AEBE,所以a,所以0a.答案:0a5. 如图所示,在三棱锥PABC中,PA平面ABC,BAC60,PAABAC2,E是PC的中点(1)求证:AE与PB是异面直线;(2)求异面直线

12、AE和PB所成角的余弦值解:(1)证明:假设AE与PB共面,设平面为.因为A,B,E,所以平面即为平面ABE,所以P平面ABE,这与P平面ABE矛盾,所以AE与PB是异面直线(2) 取BC的中点F,连接EF、AF,则EFPB,所以AEF(或其补角)就是异面直线AE和PB所成的角因为BAC60,PAABAC2,PA平面ABC,所以AF,AE,EF,cosAEF,所以异面直线AE和PB所成角的余弦值为.6. 如图,平面ABEF平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,BADFAB90,BC綊AD,BE綊FA,G,H分别为FA,FD的中点(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?解:(1)证明:由题设知,FGGA,FHHD,所以GH綊AD.又BC綊AD,故GH綊BC.所以四边形BCHG是平行四边形(2)C,D,F,E四点共面理由如下:由BE綊FA,G是FA的中点知,BE綊GF,所以EF綊BG.由(1)知BGCH,所以EFCH,故EC、FH共面又点D在直线FH上,所以C,D,F,E四点共面9