ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:314.52KB ,
资源ID:107293      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107293.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)

1、第6讲 空间向量的运算及应用基础达标1.已知三棱锥OABC,点M,N分别为AB,OC的中点,且a,b,c,用a,b,c表示,则等于()A(bca)B(abc)C(abc)D(cab)解析:选D.(cab)2已知a(2,1,3),b(1,4,2),c(7,5,),若a、b、c三向量共面,则实数等于()AB9CD解析:选D.由题意知存在实数x,y使得cxayb,即(7,5,)x(2,1,3)y(1,4,2),由此得方程组解得x,y,所以.3已知A(1,0,0),B(0,1,1),O为坐标原点,与的夹角为120,则的值为()ABCD解析:选C.(1,),cos 120,得.经检验不合题意,舍去,所以

2、.4如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i1,2,8)是上底面上其余的八个点,则(i1,2,8)的不同值的个数为()A1B2C4D8解析:选A.由题图知,AB与上底面垂直,因此ABBPi(i1,2,8),|cosBAPi|1(i1,2,8)故选A.5正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值为()ABCD解析:选D.不妨设正方体的棱长为1,如图,建立空间直角坐标系,则D(0,0,0),B(1,1,0),B1(1,1,1),平面ACD1的法向量为(1,1,1),又(0,0,1),所以cos,所以BB1与平面ACD1所成角的余弦值为 .6如图

3、所示,PD垂直于正方形ABCD所在平面,AB2,E为PB的中点,cos,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为()A(1,1,1)BCD(1,1,2)解析:选A.设P(0,0,z),依题意知A(2,0,0),B(2,2,0),则E,于是(0,0,z),cos,.解得z2,由题图知z2,故E(1,1,1)7在空间直角坐标系中,以点A(4,1,9),B(10,1,6),C(x,4,3)为顶点的ABC是以BC为斜边的等腰直角三角形,则实数x的值为_解析:由题意知(6,2,3),(x4,3,6)又0,|,可得x2.答案:28已知2ab(0,5,10),c(1,

4、2,2),ac4,|b|12,则以b,c为方向向量的两直线的夹角为_解析:由题意得,(2ab)c0102010.即2acbc10,又因为ac4,所以bc18,所以cosb,c,所以b,c120,所以两直线的夹角为60.答案:609已知点P是平行四边形ABCD所在的平面外一点,如果(2,1,4),(4,2,0),(1,2,1)对于结论:APAB;APAD;是平面ABCD的法向量;.其中正确的是_解析:因为0,0,所以ABAP,ADAP,则正确又与不平行,所以是平面ABCD的法向量,则正确因为(2,3,4),(1,2,1),所以与不平行,故错答案:10在正三棱柱ABCA1B1C1中,侧棱长为2,底

5、面边长为1,M为BC的中点,且AB1MN,则的值为_解析:如图所示,取B1C1的中点P,连接MP,以,的方向为x,y,z轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A,B1(,0,2),C,C1,M(0,0,0),设N,因为,所以N,所以,.又因为AB1MN,所以0.所以0,所以15.答案:1511已知正方体ABCDA1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点求证:FC1平面ADE.证明:如图所示,建立空间直角坐标系Dxyz,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1)(0,2,1),(2,0,

6、0),(0,2,1)设n(x,y,z)是平面ADE的一个法向量,则即解得令z2,则y1,所以n(0,1,2)因为n220.所以n.因为FC1平面ADE,所以FC1平面ADE.12如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O平面ABCD,ABAA1.证明:A1C平面BB1D1D.证明:由题设易知OA,OB,OA1两两垂直,以O为原点建立如图所示的空间直角坐标系因为ABAA1,所以OAOBOA11,所以A(1,0,0),B(0,1,0),C(1,0,0),D(0,1,0),A1(0,0,1)由,易得B1(1,1,1)因为(1,0,1),(0,2,0),(1,0,

7、1),所以0,0,所以A1CBD,A1CBB1.又BDBB1B,所以A1C平面BB1D1D.能力提升1已知正方体ABCDA1B1C1D1的棱长为a,点M在AC1上且1,N为B1B的中点,则|为()AaBaCaDa解析:选A.以D为原点建立如图所示的空间直角坐标系Dxyz,则A(a,0,0),C1(0,a,a),N.设M(x,y,z),因为点M在AC1上且,所以(xa,y,z)(x,ay,az),所以xa,y,z.所以M,所以|a.2设A,B,C,D是不共面的四点,且满足0,0,0,则BCD是()A钝角三角形B直角三角形C锐角三角形D不确定解析:选C.因为0,0,0,所以ABAC,ABAD,AD

8、AC.如图所示,设a,b,c,所以BC2a2b2,BD2a2c2,CD2b2c2.由余弦定理知BC2BD2CD22BDCDcosBDC,所以a2b2a2c2b2c22cosBDC,所以cosBDC0,所以BDC是锐角同理可知DBC,BCD都是锐角,故BCD是锐角三角形3已知e1,e2是空间单位向量,e1e2,若空间向量b满足be12,be2,且对于任意x,yR,|b(xe1ye2)|b(x0e1y0e2)|1(x0,y0R),则x0_,y0_,|b|_解析:对于任意x,yR,|b(xe1ye2)|b(x0e1y0e2)|1(x0,y0R),说明当xx0,yy0时,|b(xe1ye2)|取得最小

9、值1. |b(xe1ye2)|2|b|2(xe1ye2)22b(xe1ye2)|b|2x2y2xy4x5y,要使|b|2x2y2xy4x5y取得最小值,需要把x2y2xy4x5y看成关于x的二次函数,即f(x)x2(y4)xy25y,其图象是开口向上的抛物线,对称轴方程为x2,所以当x2时,f(x)取得最小值,代入化简得f(x)(y2)27,显然当y2时,f(x)min7,此时x21,所以x01,y02.此时|b|271,可得|b|2.答案:1224(2019浙江省十校联合体期末联考)在三棱锥OABC中,已知OA,OB,OC两两垂直且相等,点P、Q分别是线段BC和OA上的动点,且满足BPBC,

10、AQAO,则PQ和OB所成角的余弦的取值范围是_解析:根据题意,以O为原点,建立如图所示的空间直角坐标系,不妨设OAOBOC1,则A(1,0,0),B(0,1,0),C(0,0,1),P(0,b,1b)(b1),Q(a,0,0)(0a)(a,b,1b),(0,1,0),所以cos,.因为0,1,1,2,所以a0,b1时,cos,1,取得最大值;ab时,cos,取得最小值,所以PQ和OB所成角的余弦的取值范围是.答案:5. 如图,在多面体ABCA1B1C1中,四边形A1ABB1是正方形,ABAC,BCAB,B1C1綊BC,二面角A1ABC是直二面角求证:(1)A1B1平面AA1C;(2)AB1平

11、面A1C1C.证明:因为二面角A1ABC是直二面角,四边形A1ABB1为正方形,所以AA1平面BAC.又因为ABAC,BCAB,所以CAB90,即CAAB,所以AB,AC,AA1两两互相垂直建立如图所示的空间直角坐标系Axyz,设AB2,则A(0,0,0),B1(0,2,2),A1(0,0,2),C(2,0,0),C1(1,1,2)(1)(0,2,0),(0,0,2),(2,0,0),设平面AA1C的一个法向量n(x,y,z),则即即取y1,则n(0,1,0)所以2n,即n.所以A1B1平面AA1C.(2)易知(0,2,2),(1,1,0),(2,0,2),设平面A1C1C的一个法向量m(x1

12、,y1,z1),则即令x11,则y11,z11,即m(1,1,1)所以m012(1)210,所以m,又AB1平面A1C1C,所以AB1平面A1C1C.6. 如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点(1)求证:ACSD.(2)若SD平面PAC,侧棱SC上是否存在一点E,使得BE平面PAC?若存在,求SEEC的值;若不存在,试说明理由解:(1)证明:连接BD,设AC交BD于点O,连接SO,则ACBD.由题意知SO平面ABCD.以O为坐标原点,分别为x轴,y轴,z轴的正方向,建立空间直角坐标系,如图设底面边长为a,则高SOa,于是S,D,B,C,则0.故OCSD.从而ACSD.(2)侧棱SC上存在一点E,使BE平面PAC.理由如下:由已知条件知是平面PAC的一个法向量,且,.设t,则t,而0,解得t.即当SEEC21时,.而BE平面PAC,故BE平面PAC.11