1、第2课时 直线与椭圆,第九章 9.5 椭 圆,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,1.若直线ykx1与椭圆 1总有公共点,则m的取值范围是 A.m1 B.m0 C.0m5且m1 D.m1且m5,题型一 直线与椭圆的位置关系,自主演练,解析 方法一 由于直线ykx1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上,,消去y整理得(5k2m)x210kx5(1m)0. 由题意知100k220(1m)(5k2m)0对一切kR恒成立, 即5mk2m2m0对一切kR恒成立, 由于m0且m5,m1且m5.,将代入,整理得9x2
2、8mx2m240. 方程根的判别式(8m)249(2m24)8m2144.,2.已知直线l:y2xm,椭圆C: 1.试问当m取何值时,直线l与椭圆C: (1)有两个不重合的公共点;,解 将直线l的方程与椭圆C的方程联立,,(2)有且只有一个公共点;,解 当0,即m 时,方程有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.,(3)没有公共点.,研究直线与椭圆位置关系的方法 (1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数. (2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆
3、上判定直线和椭圆有交点.,题型二 弦长及中点弦问题,多维探究,命题点1 弦长问题,解析 设A,B两点的坐标分别为(x1,y1),(x2,y2), 直线l的方程为yxt,,命题点2 中点弦问题 例2 已知P(1,1)为椭圆 1内一定点,经过P引一条弦,使此弦被P点平分,则此弦所在的直线方程为_.,x2y30,解析 方法一 易知此弦所在直线的斜率存在, 设其方程为y1k(x1), 弦所在的直线与椭圆相交于A,B两点,A(x1,y1),B(x2,y2).,消去y得,(2k21)x24k(k1)x2(k22k1)0,,即x2y30.,方法二 易知此弦所在直线的斜率存在, 设斜率为k,弦所在的直线与椭圆
4、相交于A,B两点, 设A(x1,y1),B(x2,y2),,x1x22,y1y22,,(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及中点弦的问题时用“点差法”解决,往往会更简单.记住必须检验.,(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.,(1)求E的方程;,(2)矩形ABCD的两顶点C,D在直线yx2上,A,B在椭圆E上,若矩形ABCD的周长为 ,求直线AB的方程.,解 设直线AB的方程为yxm, 代入椭圆E的方程,整理得3x24mx2m220,,设A(x1,y1),B(x2,y2
5、),,整理得41m230m710,,题型三 椭圆与向量等知识的综合,师生共研,(1)求椭圆C的标准方程;,故b2a2c23,,(2)求实数的值.,设点A(x1,y1),点B(x2,y2). 若直线ABx轴,则x1x21,不符合题意; 当AB所在直线l的斜率k存在时, 设l的方程为yk(x1).,(34k2)x28k2x4k2120. 的判别式64k44(4k23)(4k212) 144(k21)0.,一般地,在椭圆与向量等知识的综合问题中,平面向量只起“背景”或“结论”的作用,几乎都不会在向量的知识上设置障碍,所考查的核心内容仍然是解析几何的基本方法和基本思想.,跟踪训练2 已知椭圆C的两个焦
6、点分别为F1(1,0),F2(1,0),短轴的两个端点分别为B1,B2. (1)若F1B1B2为等边三角形,求椭圆C的方程;,解 F1B1B2为等边三角形,,(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且 ,求直线l的方程.,当直线l的斜率不存在时,其方程为x1,不符合题意; 当直线l的斜率存在时,设直线l的方程为yk(x1),,由已知得0,设P(x1,y1),Q(x2,y2),,课时作业,2,PART TWO,1.若直线mxny4与O:x2y24没有交点,则过点P(m,n)的直线与椭圆 1的交点个数是 A.至多为1 B.2 C.1 D.0,基础保分练,1,2,3,4
7、,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设直线与椭圆交点为A(x1,y1),B(x2,y2),分别代入椭圆方程,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设弦的端点A(x1,y1),B(x2,y2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.已知F1(1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线与椭圆C
8、交于A,B两点,且|AB|3,则C的方程为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,因为过F2且垂直于x轴的直线与椭圆交于A,B两点,且|AB|3,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 依题意,当直线l经过椭圆的右焦点(1,0)时, 其方程为y0tan 45(x1),即yx1.,PF1PF2,F1PF290. 设|PF1|m,|PF2|n, 则mn4,m2n212,2mn4,mn2,,1,2,3,4,5,6,7,8,9,10,11,
9、12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由于直线ykxk1k(x1)1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.,相交,8.椭圆: 1(ab0)的左、右焦点分别为F1,F2,焦距为2c.若直线y (xc)与椭圆的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,从而MF2F130,所以MF1MF2.,9.已知椭圆C: 1(ab0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|10,
10、|AF|6,cosABF ,则椭圆C的 离心率e_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设椭圆的右焦点为F1,在ABF中,由余弦定理可解得|BF|8, 所以ABF为直角三角形,且AFB90, 又因为斜边AB的中点为O,所以|OF|c5,连接AF1, 因为A,B关于原点对称,所以|BF|AF1|8,,10.已知直线MN过椭圆 y21的左焦点F,与椭圆交于M,N两点.直线PQ过原点O与MN平行,且PQ与椭圆交于P,Q两点,则 _.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10
11、,11,12,13,14,15,16,(1)求椭圆C的离心率;,4a24b25a2,4a24(a2c2)5a2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2)若斜率为2的直线l过点(0,2),且l交椭圆C于P,Q两点,OPOQ,求直线l的方程及椭圆C的方程.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,设P(x1,y1),Q(x2,y2), 直线l的方程为y22(x0),即2xy20.,得x24(2x2)24b20, 即17x232x164b20.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
12、16,即x1x2y1y20,x1x2(2x12)(2x22)0,5x1x24(x1x2)40.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(1)求椭圆的方程;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若 8,O为坐标原点,求OCD的面积.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 由(1)可知F(1,0), 则直线CD的方程
13、为yk(x1).,消去y得(23k2)x26k2x3k260. 设C(x1,y1),D(x2,y2),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,技能提升练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设正方形的边长为2m, 椭圆的焦点在正方形的内部,mc,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.已知椭圆 1(ab0)短
14、轴的端点为P(0,b),Q(0,b),长轴的一个端点为M,AB为经过椭圆中心且不在坐标轴上的一条弦,若PA,PB的斜率之积等于 ,则点P到直线QM的距离为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设A(x0,y0),则B点坐标为(x0,y0),,则直线QM的方程为bxayab0,,拓展冲刺练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 设AB的中点为G,则由椭圆的对称性知,O为平行四边形ABCD的对角线的交点,则GOAD.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解 设M(x0,y0),P(x1,y1),Q(x2,y2), 由题意知PQ斜率存在,且不为0,所以x0y00,,因为点M在MP和MQ上,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,