ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:212.10KB ,
资源ID:105157      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-105157.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.1.1平均变化率 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

3.1.1平均变化率 学案(含答案)

1、3.1导数的概念3.1.1平均变化率学习目标1.通过实例,了解平均变化率的概念,并会求具体函数的平均变化率.2.了解平均变化率概念的形成过程,会在具体的环境中,说明平均变化率的实际意义.3.了解平均变化率的正负知识点一函数的平均变化率在吹气球时,气球的半径r(单位:dm)与气球空气容量(体积)V(单位:L)之间的函数关系是r(V).思考1当空气容量V从0增加到1 L时,气球的平均膨胀率是多少?答案平均膨胀率为0.62 (dm/L)思考2当空气容量从V1增加到V2时,气球的平均膨胀率是多少?答案平均膨胀率为.梳理函数yf(x)在区间x1,x2上的平均变化率为,其中yf(x2)f(x1)是函数值的

2、改变量知识点二平均变化率的意义思考如何用数学反映曲线的“陡峭”程度?答案如图,表示A,B之间的曲线和B,C之间的曲线的陡峭程度,可以近似地用直线的斜率来量化如用比值近似量化B,C这一段曲线的陡峭程度,并称该比值是曲线在xB,xC上的平均变化率梳理平均变化率的几何意义:设A(x1,f(x1),B(x2,f(x2)是曲线yf(x)上任意不同的两点,函数yf(x)的平均变化率为割线AB的斜率1函数yx21在2,3上的平均变化率是5.()2甲、乙二人销售化妆品,从2014年2月开始的3个月内,甲投入资金5万元,获利4万元,乙投入资金8万元,获利6万元因此我们认为乙的经营效果较好()3一次函数任意两点的

3、平均变化率都是相应直线的斜率()4函数f(x)在A(x1,y1),B(x2,y2)上的平均变化率就是直线AB的斜率()类型一求函数的平均变化率例1(1)已知函数f(x)2x23x5.求:当x14,x25时,函数增量y和平均变化率;求:当x14,x24.1时,函数增量y和平均变化率.(2)求函数yf(x)x2在x1,2,3附近的平均变化率,取x都为,哪一点附近的平均变化率最大?解(1)因为f(x)2x23x5,所以yf(x1x)f(x1)2(x1x)23(x1x)5(2x3x15)2(x)22x1x3x2(x)2(4x13)x.2x4x13.当x14,x25时,x1,y2(x)2(4x13)x2

4、1921,21.当x14,x24.1时,x0.1,y2(x)2(4x13)x0.021.91.92.2x4x1319.2.(2)在x1附近的平均变化率为k12x;在x2附近的平均变化率为k24x;在x3附近的平均变化率为k36x.当x时,k12,k24,k36.由于k1k2,甲企业的生产效益较好1准确理解平均变化率的意义是求解平均变化率的关键,其实质是函数值增量y与自变量取值增量x的比值涉及具体问题,计算y很容易出现运算错误,因此,计算时要注意括号的应用,先列式再化简,这是减少错误的有效方法2函数的平均变化率在生产生活中有广泛的应用,如平均速度、平均劳动生产率、面积体积变化率等解决这类问题的关键是能从实际问题中引出数学模型并列出函数关系式,需注意是相对什么量变化的