ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:199.26KB ,
资源ID:105152      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-105152.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.5圆锥曲线的共同性质 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2.5圆锥曲线的共同性质 学案(含答案)

1、2.5圆锥曲线的共同性质学习目标1.理解并会运用圆锥曲线的共同性质,解决一些与圆锥曲线有关的简单几何问题和实际问题.2.了解圆锥曲线的统一定义,掌握圆锥曲线的离心率、焦点、准线等概念知识点圆锥曲线的共同性质思考圆锥曲线有怎样的共同性质?如何研究圆锥曲线的共同性质?答案如图,过点M作MHl,H为垂足,由圆锥曲线的统一定义可知MM|FMeMH取过焦点F,且与准线l垂直的直线为x轴,F(O)为坐标原点,建立直角坐标系设点M的坐标为(x,y),则OM.设直线l的方程为xp,则MH|xp|.把,代入OMeMH,得e|xp|.两边平方,化简得(1e2)x2y22pe2xp2e20.这就是圆锥曲线(椭圆、双

2、曲线、抛物线)在直角坐标系中的共同性质梳理(1)圆锥曲线上的点到一个定点F和到一条定直线l(F不在定直线l上)的距离之比等于常数e.当0e1时,它表示双曲线;当e1时,它表示抛物线其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线(2)椭圆1(ab0)的准线方程为x,1(ab0)的准线方程为y.双曲线1(a0,b0)的准线方程为x,双曲线1(a0,b0)的准线方程为y.1若平面内动点P到定点F的距离和它到一条定直线l的距离的比是一个常数e(e0),则动点P的轨迹是圆锥曲线()2双曲线x2y21的准线方程为x.()3.1上的点到左准线的距离是,则该点到右准线的距离是8.(

3、)4点M(x,y)与定点F(4,0)的距离和它到直线l:x的距离的比是常数,则点M的轨迹为1.()类型一已知准线求圆锥曲线的方程例1双曲线的中心在原点,焦点在坐标轴上,两准线间的距离为4,且经过点A(2,3),求双曲线的方程解(1)若焦点在x轴上,设双曲线的方程为1(a0,b0),由已知得a22c,b2c2a2c22c.代入1,整理得c214c330,c3或c11.a26,b23或a222,b299.双曲线的方程为1或1.(2)若焦点在y轴上,设双曲线的方程为1(a0,b0)由已知得1.将a22c,b2c22c代入1得,2c213c660,0,b0),因为抛物线y24x的焦点坐标为(1,0),由此可得a1.由,得c2.所以b2c2a23,于是双曲线的方程为x21,其渐近线方程为xy0. 1在学习圆锥曲线的统一定义时,应注意与前面学过的椭圆、双曲线和抛物线的定义、标准方程、几何性质相联系,以提高自己综合应用知识的能力和解题的灵活性2在已知准线方程时,一般转化为的数量关系,结合其他条件求出基本量a,b,c.若是求方程,可由准线的位置来确定标准方程的类型3根据圆锥曲线的统一定义,可把圆锥曲线上的点到焦点的距离转化为到对应准线的距离,这是一个非常重要的转化方法,可简化解题过程