1、3.2对数函数3.2.1对数第1课时对数的概念基础过关1.方程2log3x的解是()A. B.4 C. D.9解析2log3x22,log3x2,x32.答案C2.若logxz,则下列各式中正确的是()A.y7xz B.yx7z C.y7xz D.yz7x解析由logxz,得xz,()7(xz)7,则yx7z.答案B3.将23化为对数式为_.解析根据对数的定义知,log23.答案log234.已知xlog23,则_.解析由xlog23得2x3,所以原式.答案5.若等式log0成立,则x_.解析由1得x1.答案16.求下列各式中的x值.(1)logx27;(2)log2x;(3)logx(32)
2、2;(4)log5(log2x)0;(5)xlog27.解(1)由logx27,得x27,x27329.(2)由log2x,得2x,x.(3)由logx(32)2,得32x2,即x(32)1.(4)由log5(log2x)0,得log2x1,x212.(5)由xlog27,得27x,即33x32,x.7.求下列各式的值:(1)log33;(2)log51;(3)3log321;(4)log64;(5)lg 1lg 1010lg 5;(6)ln eln 1eln 3.解(1)log331.(2)log510.(3)3log32121.(4)log64log()66.(5)lg 1lg 1010l
3、g 50156.(6)ln eln 1eln 31034.能力提升8.已知loga2m,loga3n,则a2mn等于()A.12 B.18 C.6 D.36解析am2,an3,a2mna2man(am)2an12.答案A9.若log3(log2x)1,则x等于()A.8 B.3 C.1 D.解析log3(log2x)1,log2x3,x238,则x .答案D10.若(2x1)2(y8)20,则log(xy)_.解析由(2x1)2(y8)20得x,y8,log(xy)log4,设log4t.则()t4,即222,故2,t6,即log(xy)6.答案611.设函数f(x)满足f(x)1f()log
4、2x,则f(2)_.解析令x,可求得f(),f(x)1log2x,f(2)1log22.答案12.已知二次函数f(x)(lg a)x22x4lg a的最大值为3,求a的值.解原函数式可化为f(x)(lg a)(x)24lg a.yf(x)有最大值3,lg a0,并且4lg a3,整理得4(lg a)23lg a10,解得lg a1,或lg a.lg a0,故取lg a.a10.创新突破13.已知log2(log(log2x)log3(log(log3y)log5(log(log5z)0,试比较x,y,z的大小.解由log2(log(log2x)0得,log(log2x)1,log2x,即x2;由log3(log(log3y)0得,log(log3y)1,log3y,即y3;由log5(log(log5z)0得,log(log5z)1,log5z,即z5.y339,x228,yx,又x2232,z5525,xz,故yxz.