1、第2课时对数的运算性质及换底公式基础过关1.化简log6122log6的结果为()A.6 B.12 C.log6 D.解析原式log6log62log6log6.答案C2.已知lg 2a,lg 3b,则log312等于()A.2a B. C. D.解析log312.答案D3.计算:_.解析原式.答案4.计算:_.解析原式logloglog94log35log32log35log310.答案5.已知3a5bM,且2,则M_.解析由3a5bM,得alog3M,blog5M,故logM3logM5logM152,M.答案6.计算:(1)log25log58;(2)log23log34log45log
2、52;解(1)log25log58log283.(2)log23log34log45log521.7.已知y0,化简loga.解0,y0,x0,z0.logalogaloga(yz)logaxlogaylogaz.能力提升8.已知x,y为正实数,则()A.2lg xlg y2lg x2lg y B.2lg(xy)2lg x2lg yC.2lg xlg y2lg x2lg y D.2lg(xy)2lg x2lg y解析2lg x2lg y2lg xlg y2lg(xy).故选D.答案D9.方程log2(9x15)log2(3x12)2的解为()A.1 B.2 C.1或2 D.以上都不对解析log
3、2(9x15)log2(3x12)2,log2(9x15)log24(3x12),9x154(3x12),即(3x)2123x270,(3x3)(3x9)0,3x3或3x9,解得x1或x2.经过验证,x1不满足条件,舍去.x2.答案B10.已知函数f(x)alog2xblog3x2,且f()4,则f(2 020)_.解析由f()alog2blog324,得alog22 020blog32 0202.alog22 020blog32 0202.f(2 020)alog22 020blog32 0202220.答案011.已知logax1,logbx2,logcx4,则log(abc)x_.解析由
4、题意得logxa1,logxb,logxc,所以logx(abc)logxalogxblogxc1,即log(abc)x.答案12.已知x,y,z为正数,3x4y6z,且2xpy.(1)求p;(2)求证.(1)解设3x4y6zk(显然k0,且k1),则xlog3k,ylog4k,zlog6k.由2xpy,得2log3kplog4kp.log3k0,p2log34.(2)证明logk6logk3logk2,又logk4logk2,.创新突破13.若a,b是方程2(lg x)2lg x410的两个实根,求lg(ab)(logablogba)的值.解原方程可化为2(lg x)24lg x10.设tlg x,则方程化为2t24t10,t1t22,t1t2.又a,b是方程2(lg x)2lg x410的两个实根,t1lg a,t2lg b,即lg alg b2,lg alg b.lg(ab)(logablogba)(lg alg b)()(lg alg b)(lg alg b)212,即lg(ab)(logablogba)12.