ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:201.34KB ,
资源ID:104999      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-104999.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.2.2对数函数(三)学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

3.2.2对数函数(三)学案(含答案)

1、3.2.2对数函数(三)学习目标1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.掌握对数型复合函数奇偶性的判定方法.3.掌握对数型复合函数的最值与值域知识点求f(x)logag(x)型函数的单调区间(1)先求g(x)0的解集(也就是函数的定义域)(2)在f(x)的定义域内,先求g(x)的单调区间,再按“同增异减”原则与对数函数复合.题型一对数型复合函数的单调性例1求函数y(x22x1)的值域和单调区间解设tx22x1,则t(x1)22(0,2y为单调减函数,且00,由二次函数的图象知1x0,由二次函数的图象知0x2.当0x2时,yx22x(x1)21(0,1,(x22x)10.函数

2、y(x22x)的值域为0,)(2)设ux22x(0x2),vu,函数ux22x在(0,1)上是单调增函数,在(1,2)上是单调减函数,vu是单调减函数,由复合函数的单调性得函数f(x)(x22x)在(0,1)上是单调减函数,在(1,2)上是单调增函数例2已知函数y(x2axa)在区间(,)上是单调增函数,求实数a的取值范围解令g(x)x2axa,则g(x)在上是单调减函数,00在x(,)上恒成立,即2a2(1),故所求a的取值范围是2,2(1)反思感悟若a1,则ylogaf(x)的单调性与yf(x)的单调性相同,若0a0,所以u6ax是单调减函数,那么函数ylogau就是单调增函数,所以a1,

3、因为0,2为定义域的子集,所以当x2时,u6ax取得最小值,所以62a0,解得a3,所以1a0可得2x0,得bx0可得xR,所以函数的定义域为R且关于原点对称,又f(x)lg(x)lg lg lg(x)f(x),即f(x)f(x)所以函数f(x)lg(x)是奇函数方法二由x0可得xR,f(x)f(x)lg(x)lg(x)lg(x)(x)lg(1x2x2)0.所以f(x)f(x),所以函数f(x)lg(x)是奇函数题型三对数型复合函数的值域与最值例4设f(x)loga(1x)loga(3x)(a0,且a1),且f(1)2.(1)求a的值及f(x)的定义域;(2)求f(x)在区间上的最大值解(1)

4、f(1)2,loga(11)loga(31)loga42,解得a2(a0,且a1),由得x(1,3)函数f(x)的定义域为(1,3)(2)f(x)log2(1x)log2(3x)log2(1x)(3x)log2,当x0,1时,f(x)是增函数;当x时,f(x)是减函数函数f(x)在上的最大值是f(1)log242.反思感悟(1)求对数函数或与对数函数相关的复合函数的值域(最值)时,关键是根据单调性求解,若需换元,需考虑新元的取值范围(2)对于形如ylogaf(x)(a0,且a1)的复合函数,其值域的求解步骤如下:分解成ylogau,uf(x)两个函数;求f(x)的定义域;求u的取值范围;利用y

5、logau的单调性求解跟踪训练4若函数ylog2(x22)(axb)的值域是1,log214,则a,b的值分别为()A. B.C. D.或答案D解析由1log2(x22)log214得2x2214,得4x216,得4x2或2x4.由x220得x,故b.当a时,由函数ylog2(x22)(axb)是增函数得2x4,故a2,b4;当b0得(2x1)(x1)0,解得x1.设t2x23x122,所以函数t2x23x1的单调递增区间为(1,),又yt为减函数,故y(2x23x1)的单调递减区间为(1,)2函数y(34xx2)的单调递增区间是()A(,2) B(2,) C(1,2) D(2,3)答案D解析

6、由34xx20,得x24x30,得1x3.设t34xx2,其图象的对称轴为x2.函数yt为减函数,要求函数y(34xx2)的单调递增区间,即求函数t34xx2,1x3的单调递减区间,函数t34xx2,1x0,且a1)在区间(1,2)上是增函数,则f(x)在区间(2,)上的单调性为()A先增后减 B先减后增C单调增函数 D单调减函数答案D解析当1x2时,函数f(x)loga|x2|loga(2x)在区间(1,2)上是单调增函数,所以0a1,函数f(x)loga|x2|在区间(2,)上的解析式为f(x)loga(x2)(0a0,即(x1)(x1)0,解得1x0解得定义域为x|x1,因为ylog2t

7、在定义域上是单调增函数,tx21在(1,)上是单调增函数,所以函数的单调增区间为(1,)7(2018全国)已知函数f(x)ln(x)1,f(a)4,则f(a)_.答案2解析f(x)f(x)ln(x)1ln(x)1ln(1x2x2)22,f(a)f(a)2,f(a)2.8若yloga(ax3)(a0且a1)在区间(1,)上是增函数,则a的取值范围是_答案(1,3解析因为yloga(ax3)(a0且a1)在区间(1,)上是增函数,所以解得10.设tlog2x(tR),则原函数可以化为yt(t1)2(tR),故该函数的最小值为.故f(x)的最小值为.三、解答题11已知函数f(x)loga(1x)lo

8、ga(x3),其中0a1.(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为4,求a的值解(1)要使函数有意义,则有解得3x1,所以函数的定义域为(3,1)(2)函数可化为f(x)loga(1x)(x3)loga(x22x3)loga(x1)24,因为3x1,所以0(x1)244.因为0a1,所以loga(x1)24loga4,即f(x)minloga4,由loga44,得a44,所以a.12已知f(x)(x2axa)(1)当a1时,求f(x)的单调区间及值域;(2)若f(x)在上为单调增函数,求实数a的取值范围解(1)当a1时,f(x)(x2x1),x2x12,(x2x1)2log

9、23,f(x)的值域为(,2log23yx2x1在上是单调减函数,在上是单调增函数,yx在(0,)上是单调减函数 ,f(x)的单调增区间为,单调减区间为.(2)令ux2axa2a,f(x)在上为单调增函数,又yu为单调减函数,ux2axa在(,)上为单调减函数,且u0在上恒成立因此即解得1a.故实数a的取值范围是.13已知函数f(x)ln(3x)ln(3x)(1)求函数yf(x)的定义域;(2)判断函数yf(x)的奇偶性;(3)若f(2m1)f(m),求m的取值范围解(1)要使函数有意义,则解得3x3,故函数yf(x)的定义域为(3,3)(2)由(1)可知,函数yf(x)的定义域为(3,3),关于原点对称对任意x(3,3),则x(3,3)f(x)ln(3x)ln(3x)f(x),由函数奇偶性可知,函数yf(x)为偶函数(3)函数f(x)ln(3x)ln(3x)ln(9x2),由复合函数单调性判断法则知,当0x3时,函数yf(x)为减函数又函数yf(x)为偶函数,不等式f(2m1)f(m)等价于|m|2m1|3,解得1m或1m2.