ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:143.87KB ,
资源ID:104743      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-104743.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.3.2等比数列的通项公式(第3课时)等比数列前n项和公式 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2.3.2等比数列的通项公式(第3课时)等比数列前n项和公式 学案(含答案)

1、第3课时等比数列前n项和公式学习目标1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题知识点一等比数列的前n项和公式已知量首项、公比与项数首项、公比与末项求和公式SnSn知识点二错位相减法1推导等比数列前n项和的方法叫错位相减法2该方法一般适用于求一个等差数列与一个等比数列对应项积的前n项和,即若bn是公差d0的等差数列,cn是公比q1的等比数列,求数列bncn的前n项和Sn时,也可以用这种方法思考如果Sna1a2qa3q2anqn1,其中an是公差为d的等差数列,q1.两边同乘以q,再两式相减会怎样?答案Sna1a2qa3q2anqn1

2、,qSna1qa2q2an1qn1anqn,得,(1q)Sna1(a2a1)q(a3a2)q2(anan1)qn1anqna1d(qq2qn1)anqn.同样能转化为等比数列求和知识点三使用等比数列求和公式时注意事项(1)一定不要忽略q1的情况;(2)知道首项a1、公比q和项数n,可以用Sn;知道首尾两项a1,an和q,可以用Sn;(3)在通项公式和前n项和公式中共出现了五个量:a1,n,q,an,Sn.知道其中任意三个,可求其余两个1在等比数列an中,a1b,公比为q,则前3项和为.()2求数列n2n的前n项和可用错位相减法()3.()4等比数列前n项和Sn不可能为0.()题型一等比数列前n

3、项和公式的直接应用例1求下列等比数列前8项的和:(1),;(2)a127,a9,q0.解(1)因为a1,q,所以S8.(2)由a127,a9,可得27q8.又由q0,q,S5211.4某厂去年产值为a,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为_答案11a(1.151)解析去年产值为a,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a,1.1a1.12a1.13a1.14a1.15a11a(1.151)5已知数列an的前n项和为Sn,且ann2n,则Sn_.答案(n1)2n12(nN*)解析ann2n,Sn121222323n2n,2Sn122223(n1)2nn2n1,得Sn222232nn2n1n2n12n12n2n1(1n)2n12.Sn(n1)2n12(nN*)1在等比数列的通项公式和前n项和公式中,共涉及五个量:a1,an,n,q,Sn,其中首项a1和公比q为基本量,且“知三求二”2前n项和公式的应用中,注意前n项和公式要分类讨论,即当q1和q1时是不同的公式形式,不可忽略q1的情况3一般地,如果数列an是等差数列,bn是等比数列且公比为q,求数列anbn的前n项和时,可采用错位相减法求和