ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:122.63KB ,
资源ID:104013      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-104013.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第3章 概率 章末复习课 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第3章 概率 章末复习课 学案(含答案)

1、章末复习学习目标1.了解频率与概率的关系.2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率.3.会求古典概型的概率1频率与概率大量重复试验中的频率是概率的近似值,是随机的,随着试验的不同而变化;概率是多数次的试验中频率的稳定值,是一个常数,不要用一次或少数次试验中的频率来估计概率2求较复杂概率的常用方法(1)将所求事件转化为彼此互斥的事件的和(2)先求其对立事件的概率,然后再应用公式P(A)1P()求解3古典概型概率的计算关键要分清等可能基本事件的总数n与事件A包含的基本事件的个数m,再利用公式P(A)求解有时需要用列举法把基本事件一一列举出来,在列举时按某一顺

2、序,必须做到不重不漏1两个事件的和事件是指两个事件都发生的事件()2“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽”与“不发芽”()3事件和的概率等于其概率的和()题型一频率与概率例1对一批U盘进行抽检,结果如下表:抽出件数a50100200300400500次品件数b345589次品频率(1)计算表中次品的频率;(2)从这批U盘中任意抽取一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘?解(1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数

3、a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任意抽取一个是次品的概率约是0.02.(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(10.02)2 000,因为x是正整数,所以x2 041,即至少需进货2 041个U盘反思感悟概率是个常数但除了几类概率概型,概率并不易知,故可用频率来估计跟踪训练1某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率0.80.950.880.920.890.91(1)该射击运动员射击一次,击中靶心的概率大约是多少?(2)假设

4、该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?解(1)由题意得击中靶心的频率与0.9接近,故概率约为0.9.(2)击中靶心的次数大约为3000.9270.(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化后30次中,每次击中靶心的概率仍是0.9,所以不一定不击中靶心(4)不一定题型二互斥事件与对立事件例2甲、乙两人参加普法知识竞赛,共有5个不同的题目,选择题3个,判断题2个,甲、乙两人各抽一题(

5、1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?解把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种

6、;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种因此基本事件的总数为666220.(1)“甲抽到选择题,乙抽到判断题”的概率为,“甲抽到判断题,乙抽到选择题”的概率为,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为.(2)“甲、乙两人都抽到判断题”的概率为,故“甲、乙两人至少有一人抽到选择题”的概率为1.反思感悟在求有关事件的概率时,若从正面分析,包含的事件较多或较烦琐,而其反面却较容易入手,这时,可以利用对立事件求解跟踪训练2某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概

7、率是0.35.(1)打进的电话在响5声之前被接的概率是多少?(2)打进的电话响4声而不被接的概率是多少?解(1)设事件“电话响第k声时被接”为Ak(kN*),那么事件Ak之间彼此互斥,设“打进的电话在响5声之前被接”为事件A,则P(A)P(A1A2A3A4)P(A1)P(A2)P(A3)P(A4)0.10.20.30.350.95.(2)事件“打进的电话响4声而不被接”是事件A“打进的电话在响5声之前被接”的对立事件,记为B.根据对立事件的概率公式,得P(B)1P(A)10.950.05.题型三古典概型例3甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女(1)若从甲校和乙校报名的

8、教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师报名同一学校的概率解甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D表示,两名女教师分别用E,F表示(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种从中选出的2名教师性别相同的结果有(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率P.(2)从甲校和乙校报名的教师中任选2名的所

9、有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种从中选出的2名教师来自同一学校的结果有(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种所以选出的2名教师来自同一学校的概率P.反思感悟解决古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算跟踪训练3甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢(1)若用A表示和

10、为6的事件,求P(A);(2)现连玩三次,若用B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件,为什么?(3)这种游戏规则公平吗?试说明理由解(1)基本事件个数与点集S(x,y)|xN,yN,1x5,1y5中的元素一一对应,所以S中点的总数为5525(个),所以基本事件总数n25.事件A包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),共有5个,故P(A).(2)B与C不是互斥事件因为B与C可以同时发生,如甲赢一次,乙赢两次时,B,C同时发生(3)这种游戏规则不公平由(1)知和为偶数的基本事件有13个:(1,1),(1,3),(1,5),(

11、2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5),所以甲赢的概率为,乙赢的概率为,所以这种游戏规则不公平1下列事件:任取三条线段,这三条线段恰好组成直角三角形;从一个三角形的三个顶点各任画一条射线,这三条射线交于一点;实数a,b都不为0,但a2b20;明年12月28日的最高气温高于今年12月28日的最高气温,其中为随机事件的是()A BC D答案B解析任取三条线段,这三条线段可能组成直角三角形,也可能组不成直角三角形,故为随机事件;从一个三角形的三个顶点各任画一条射线,三条射线可能不相交,交于一点、交于两点、交于三点,故为随机

12、事件;若实数a,b都不为0,则a2b2一定不等于0,故为不可能事件;由于明年12月28日还未到来,故明年12月28日的最高气温可能高于今年12月28日的最高气温,也可能低于今年12月28日的最高气温,还可能等于今年12月28日的最高气温,故为随机事件故选B.2不透明袋子中放有大小相同的5个球,球上分别标有号码1,2,3,4,5,若从袋中任取3个球,则这3个球号码之和为5的倍数的概率为()A. B. C. D.答案B解析基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种

13、,满足要求的基本事件有(1,4,5),(2,3,5),共2种,故所求概率为.故选B.3下列命题:将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;若事件A与B互为对立事件,则事件A与B为互斥事件;若事件A与B为互斥事件,则事件A与B互为对立事件;若事件A与B互为对立事件,则事件AB为必然事件其中的真命题是()A B C D 答案B解析对于,一枚硬币抛两次,共出现正,正,正,反,反,正,反,反四种结果,则事件M与N是互斥事件,但不是对立事件,故错;对于,对立事件首先是互斥事件,故正确;对于,互斥事件不一定是对立事件,如中的两个事件,故错;对于,

14、事件A,B为对立事件,则在这一次试验中A,B一定有一个要发生,故正确故B正确4甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率为_答案解析共有4个事件“甲、乙同住房间A,甲、乙同住房间B,甲住A乙住B,甲住B乙住A”,两人各住一个房间共有两种情况,所以甲、乙两人各住一间房的概率是.5任取一个三位正整数N,则对数log2N是一个正整数的概率是_答案解析三位正整数有100999,共900个,而满足log2N为正整数的N有27,28,29,共3个,故所求事件的概率为.1两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥若事件A1,A2,A3,An彼此互斥,则P(A1A2An)P(A1)P(A2)P(An)2关于古典概型,必须要解决好下面三个方面的问题:(1)本试验的基本事件是不是等可能的?(2)本试验的基本事件有多少个?(3)事件A是什么,它包含多少个基本事件?只有回答好这三个方面的问题,解题才不会出错