ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:181.58KB ,
资源ID:103767      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-103767.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第3章 三角恒等变换 章末复习学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第3章 三角恒等变换 章末复习学案(含答案)

1、章末复习一、网络构建二、要点归纳1两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().2二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.3升幂公式1cos 22cos2.1cos 22sin2.4降幂公式sin xcos x,cos2x,sin2x.5和差角正切公式变形tan tan tan()(1tan tan ),tan tan tan()(1tan tan

2、 )6辅助角公式yasin xbcos xsin(x)7积化和差公式sin cos sin()sin()cos sin sin()sin()cos cos cos()cos()sin sin cos()cos()8和差化积公式sin sin 2sin cos.sin sin 2cossin.cos cos 2coscos.cos cos 2sinsin.9万能公式(1)sin .(2)cos .(3)tan .题型一三角函数求值例1(1)的值为()A B. C. D考点利用二倍角公式化简求值题点利用正弦的二倍角公式化简求值答案B解析原式.(2)设为钝角,且3sin 2cos ,则sin .答案

3、解析因为为钝角,所以sin 0,cos 0,由3sin 2cos ,可得6sin cos cos ,所以sin .反思感悟三角函数的求值问题通常包括三种类型,即给角求值,给值求值,给值求角给角求值的关键是将要求角转化为特殊角的三角函数值;给值求值关键是找准要求角与已知角之间的联系,合理进行拆角、凑角;给值求角实质是给值求值,先求角的某一三角函数值,再确定角的范围,从而求出角跟踪训练1已知tan(),tan,那么tan等于()A. B. C. D.考点两角和与差的正切公式题点利用两角和与差的正切公式求值答案C解析tantan.题型二三角函数式的化简与证明例2化简:.考点整体与换元思想在三角恒等变

4、换中的应用题点整体与换元思想在三角恒等变换中的应用解原式cos 2x.反思感悟三角函数化简常用策略有:切化弦、异名化同名、降幂公式、1的代换等,化简的结果应做到项数尽可能少,次数尽可能低,函数名尽量统一三角函数证明常用方法有:从左向右(或从右向左),一般由繁向简;从两边向中间,左右归一法;作差证明,证明“左边右边0”;左右分子、分母交叉相乘,证明差值为0等跟踪训练2证明:tan .考点三角恒等式的证明题点三角恒等式的证明证明左边tan 右边,原等式成立题型三三角恒等变换与函数、向量的综合运用例3已知向量a(cos ,sin ),b(cos ,sin ),|ab|.(1)求cos()的值;(2)

5、若0,且sin ,求sin 的值考点和、差角公式的综合应用题点和、差角公式与其他知识的综合应用解(1)因为向量a(cos ,sin ),b(cos ,sin ),|ab|,所以22cos(),所以cos().(2)因为0,0,所以0,因为cos(),所以sin(),且sin ,cos ,所以sin sin()sin()cos cos()sin .反思感悟三角函数与三角恒等变换综合问题,通常是通过三角恒等变换,如降幂公式,辅助角公式对三角函数式进行化简,最终化为yAsin(x)k或yAcos(x)k的形式,再研究三角函数的性质当问题以向量为载体时,一般是通过向量运算,将问题转化为三角函数形式,再

6、运用三角恒等变换进行求解跟踪训练3已知函数f(x)cossin2xcos2x2sin xcos x.(1)化简f(x);(2)若f(),2是第一象限角,求sin 2.考点应用二倍角公式化简求值题点综合应用二倍角公式化简求值解(1)f(x)cos 2xsin 2xcos 2xsin 2xsin 2xcos 2xsin.(2)f()sin,2是第一象限角,即2k22k(kZ),2k22k(kZ),cos,sin 2sinsincos cossin .1若,都是锐角,且cos ,sin(),则cos 等于()A. B.C.或 D.或考点和、差角公式的综合应用题点综合运用和、差角公式化简求值答案A解析

7、由,都是锐角,且cos ,sin(),得sin ,cos(),cos cos()cos cos()sin sin().2已知tan,则的值为()A. B C. D答案A解析tan.3在ABC中,若tan Atan Btan Atan B1,则cos C的值是()A B. C. D考点简单的三角恒等变换的应用题点简单的三角恒等变换与三角形的综合应用答案B解析由tan Atan Btan Atan B1,得1,即tan(AB)1.AB(0,),AB.C,cos C.4.的值是 答案1解析tan 451,1.5已知函数f(x)cos xsincos2x,xR.(1)求f(x)的最小正周期;(2)求f(x)在闭区间上的最大值和最小值考点简单的三角恒等变换的综合应用题点简单的三角恒等变换与三角函数的综合应用解(1)由已知,得f(x)cos xcos2xsin xcos xcos2xsin 2x(1cos 2x)sin 2xcos 2xsin.所以f(x)的最小正周期T.(2)因为f(x)在区间上是减函数,在区间上是增函数,f,f,f,所以函数f(x)在闭区间上的最大值为,最小值为.