1、第三节探究外力做功与物体动能变化的关系知识目标核心素养1.能用牛顿第二定律和运动学公式导出动能定理,理解动能定理的物理意义.2.能应用动能定理解决简单的问题.1.通过自主和合作探究掌握恒力作用下动能定理的推导,培养科学研究兴趣.2.体会应用动能定理解决问题的优越性.动能定理1推导:合力对物体所做功与动能变化的关系如图1所示,质量为m的物体,在一恒定拉力F作用下,以初速度v1开始沿水平面运动,经位移s后速度增加到v2,已知物体与水平面的摩擦力恒为f.图1(1)外力做的总功:W(Ff)s.(2)由牛顿第二定律得:Ffma.(3)由运动学公式得:s.由以上式子求得:Wmv22mv12.2内容:合力对
2、物体所做的功等于物体动能的变化3表达式:WEk2Ek1.4适用范围:既适用于恒力做功,也适用于变力做功既适用于直线运动,也适用于曲线运动1判断下列说法的正误(1)合外力为零,物体的动能一定不会变化()(2)合外力不为零,物体的动能一定会变化()(3)物体动能增加,则它的合外力一定做正功()(4)合外力对物体做负功,物体的动能可能不变()2在光滑水平面上,质量为2 kg的物体以2 m/s的速度向东运动,若对它施加一向西的力F使它停下来,则该外力对物体做的功是_答案4 J解析由动能定理可知:WF0mv20222 J4 J.一、动能定理的理解1表达式WEk2Ek1mv22mv12(1)Ek2mv22
3、表示这个过程的末动能;Ek1mv12表示这个过程的初动能(2)W表示这个过程中合力做的功,它等于各力做功的代数和2物理意义:动能定理指出了合外力对物体所做的总功与物体动能变化之间的关系,即:若合外力做正功,物体的动能增加,若合外力做负功,物体的动能减小,做了多少功,动能就变化多少3实质:动能定理从能量变化的角度反映了力改变运动的状态时,在空间上的累积效果例1下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是()A物体做变速运动,合外力一定不为零,动能一定变化B若合外力对物体做功为零,则合外力一定为零C物体的合外力做功,它的速度大小一定发生变化D物体的动能不变,所受的合外力必定为零答案
4、C解析力是改变物体速度的原因,物体做变速运动时,合外力一定不为零,但合外力不为零时,做功可能为零,动能可能不变,A、B错误物体的合外力做功,它的动能一定变化,速度大小也一定变化,C正确物体的动能不变,所受合外力做功一定为零,但合外力不一定为零,D错误二、动能定理的简单应用1动能定理应用中的研究对象一般为单个物体2动能定理的研究过程既可以是运动过程中的某一阶段,也可以是运动全过程3通常情况下,某问题若涉及时间或过程的细节,要用牛顿运动定律去解决;某问题若不考虑具体细节、状态或时间,如物体做曲线运动、受力为变力等情况,一般要用动能定理去解决4应用动能定理解题的步骤:(1)确定研究对象和研究过程(研
5、究对象一般为单个物体或相对静止的物体组成的系统)(2)对研究对象进行受力分析(注意哪些力做功或不做功)(3)确定合外力对物体做的功(注意功的正负)(4)确定物体的初、末动能(注意动能增量是末动能减初动能)(5)根据动能定理列式、求解例2如图2所示,物体在离斜面底端5 m处由静止开始下滑,然后滑上与斜面平滑连接的水平面,若物体与斜面及水平面的动摩擦因数均为0.4,斜面倾角为37.求物体能在水平面上滑行的距离(sin 370.6,cos 370.8)图2答案3.5 m解析对物体在斜面上和水平面上受力分析如图所示方法一分过程列方程:设物体滑到斜面底端时的速度为v,物体下滑阶段FN1mgcos 37,
6、故f1FN1mgcos 37.由动能定理得:mgsin 37s1mgcos 37s1mv20设物体在水平面上滑行的距离为s2,摩擦力f2FN2mg由动能定理得:mgs20mv2由以上各式可得s23.5 m.方法二全过程列方程:mgs1sin 37mgcos 37s1mgs20得:s23.5 m.针对训练如图3所示,物体从高h的斜面顶端A由静止滑下,到斜面底端后又沿水平面运动到C点而停止要使这个物体从C点沿原路返回到A,则在C点处物体应具有的速度大小至少是()图3A. B2C. D.答案B解析从AC由动能定理得mghWf0,从CA有mghWf0mv02,故C点速度v02.例3如图4所示,AB段为
7、粗糙水平面轨道,BC段是固定于竖直平面内的光滑半圆形导轨,半径为R.一质量为 m的滑块静止在A点,在水平恒力F作用下从A点向右运动,当运动至B点时,撤去恒力F,滑块沿半圆形轨道向上运动恰能通过最高点C.已知滑块与水平轨道间的滑动摩擦力f,水平恒力F.求:图4(1)滑块与水平轨道间的动摩擦因数;(2)滑块运动至C点的速度大小vC;(3)水平轨道AB的长度L.答案(1)0.25(2)(3)10R解析(1)滑块在水平轨道上运动时,由fFNmg得:0.25(2)滑块在C点时仅受重力,据牛顿第二定律,有mgm可得:vC(3)滑块从A到C的过程,运用动能定理得:(Ff)L2mgRmv C20又f,F解得:
8、L10R.1.(对动能定理的理解)有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图5所示如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是()图5A木块所受的合外力为零B因木块所受的力都不对其做功,所以合外力做的功为零C重力和摩擦力的合力做的功为零D重力和摩擦力的合力为零答案C解析木块做曲线运动,速度方向变化,加速度不为零,故合外力不为零,A错;速率不变,动能不变,由动能定理知,合外力做的功为零,而支持力始终不做功,重力做正功,所以重力做的功与摩擦力做的功的代数和为零,但重力和摩擦力的合力不为零,C对,B、D错【考点】对动能定理的理解【题点】用动能定理定性分析问题2(动能定
9、理的应用)(多选)甲、乙两个质量相同的物体,用相同的力F分别拉着它们在水平面上从静止开始运动相同的距离s.如图6所示,甲在光滑面上,乙在粗糙面上,则下列关于力F对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是()图6A力F对甲物体做功多B力F对甲、乙两个物体做的功一样多C甲物体获得的动能比乙大D甲、乙两个物体获得的动能相同答案BC解析由WFs可知,两种情况下力F对甲、乙两个物体做的功一样多,A错误,B正确;根据动能定理,对甲有FsEk1,对乙有FsfsEk2,可知Ek1Ek2,即甲物体获得的动能比乙大,C正确,D错误【考点】对动能定理的理解【题点】用动能定理定性分析问题3(动能定理
10、的应用)一辆汽车以v16 m/s的速度沿水平路面行驶时,急刹车后能滑行s13.6 m,如果以v28 m/s的速度行驶,在同样的路面上急刹车后滑行的距离s2应为()A6.4 m B5.6 mC7.2 m D10.8 m答案A解析急刹车后,车只受摩擦力的作用,且两种情况下摩擦力的大小是相同的,汽车的末速度皆为零,故:Fs10mv12Fs20mv22式除以式得s2s123.6 m6.4 m.【考点】应用动能定理进行有关的计算【题点】应用动能定理求位移4(动能定理的应用)半径R1 m的圆弧轨道下端与一光滑水平轨道连接,水平轨道离地面高度h1 m,如图7所示,有一质量m1.0 kg的小滑块自圆轨道最高点A由静止开始滑下,经过水平轨道末端B时速度为4 m/s,滑块最终落在地面上,g取10 m/s2,试求:图7(1)不计空气阻力,滑块落在地面上时速度的大小;(2)滑块在轨道上滑行时克服摩擦力做的功答案(1)6 m/s(2)2 J解析(1)从B点到地面这一过程,只有重力做功,根据动能定理有mghmv2mvB2,代入数据解得v6 m/s.(2)设滑块在轨道上滑行时克服摩擦力做的功为Wf,对A到B这一过程运用动能定理有mgRWfmvB20,解得Wf2 J.【考点】应用动能定理进行有关的计算【题点】应用动能定理求功