ImageVerifierCode 换一换
格式:PPTX , 页数:59 ,大小:4.24MB ,
资源ID:101923      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-101923.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版八年级数学下册第十八章 平行四边形18.1.1平行四边形的性质课件(2课时共59张))为本站会员(牛***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教版八年级数学下册第十八章 平行四边形18.1.1平行四边形的性质课件(2课时共59张)

1、18.1 平行四边形 18.1.1 平行四边形的性质,第一课时,第二课时,人教版 数学 八年级 下册,平行四边形边、角的性质,第一课时,返回,【观察】上面图形给我们留下什么图形的形象?,1. 理解并掌握平行四边形的概念及掌握平行四边形的定义和对边相等、对角相等的两条性质.,2. 能够灵活运用平行四边形的性质解决问题.,素养目标,3. 经历“实验猜想验证证明”的过程,发展学生的思维水平.,下列常见的四边形它们的边之间有什么关系呢?,平行四边形的定义,两组对边都不平行,一组对边平行, 一组对边不平行,两组对边分别平行,你们还记得我们以前对平行四边形的定义吗?,两组对边分别平行的四边形叫做平行四边形

2、.,读作:平行四边形ABCD,记作: ABCD,ABCD,ADBC,四边形ABCD是平行四边形,四边形ABCD是平行四边形,ABCD,ADBC,两组对边分别平行,四边形,平行四边形,注:图形中字母的标识顺序应为顺时针方向或逆时针方向。,例1 如图是某区部分街道示意图,其中BCADEG,AB/FHDC图中的平行四边形共有_个.并把它们表示出来.,9,利用平行四边形的定义判断平行四边形,解:DCFH AB,DA EG CB, 根据平行四边形的定义可以判定图中共有9个平行四边形,即 AEGD, ABHF, AEOF, GOFD,BEOH, CHFD, BEGC, CHFD, ABCD.,提示:用定义

3、判定平行四边形,即看四边形两组对边是否分别平行.,1.你能从以下图形中找出平行四边形吗?,(2),(3),(1),(4),(5),B,A,D,c,方法一 观察、度量,平行四边形除两组对边分别平行外,你还能得到对边有什么关系?用什么方法得到这个关系?,平行四边形边的特征,D,方法二 剪开、叠合,C,已知:四边形ABCD是平行四边形 求证:AD=BC, AB=CD,已知:如图,在平行四边形 ABCD中, 求证: AB=CD, AD=BC,证明:连接AC, ABCD中 ABCD,ADBC 13,24 又ACCA ABCCDA (ASA), ABCD,CBAD,方法点拨:作对角线是解决四边形问题常用的

4、辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题,A,D,C,B,1,4,2,3,几何语言:,平行四边形的两组对边分别相等., 四边形ABCD是平行四边形, ABCD,ADBC(平行四边形的对边相等),或,平行四边形的性质,证明:四边形ABCD是平行四边形,,BAE=DCF., ABE CDF., AB=CD,AB CD,又AE=CF,,BE=DF.,利用平行四边形边的性质求证线段的关系,2.如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?,解: 四边形ABCD是平行四边形 AB=CD, AD=BC AB=8m CD=8m

5、又AB+BC+CD+AD=36m, AD=BC=10m,8cm,A,B,C,D,测得A =C,B =D.,请用量角器等工具度量你手中平行四边形的四个角,并记录下数据,你能发现A与C,B与D之间的数量关系吗?,猜想: 平行四边形的两组对角有什么数量关系?,两组对角分别相等.,怎样证明这个猜想呢?,平行四边形角的特征,证明:如图,连接AC. 四边形ABCD是平行四边形, ADBC,AB CD, 1=2,3=4. 又AC是ABC和CDA的公共边, ABCCDA, ABC=ADC. BAD=1+4,BCD=2+3, BAD=BCD.,1,4,3,2,已知:四边形ABCD是平行四边形. 求证:BAD=B

6、CD,ABC=ADC.,【思考】不添加辅助线,你能否直接运用平行四边形的 定义,证明其对角相等?,证明:四边形ABCD是平行四边形, ADBC,AB CD, A+B=180, A+D=180, B=D. 同理可得A=C.,几何语言:, 四边形ABCD是平行四边形,或,A= C, B= D(平行四边形的对角相等),A= C, B= D(平行四边形的对角相等),平行四边形的两组对角分别相等.,平行四边形的性质,解:, A=C=52(平行四边形的对角相等),又ADBC(平行四边形的对边平行),A+B=180C+D=180 (两直线平行,同旁内角互补),B=D= 180 A= 180 52=128 ,

7、利用平行四边形角的性质求证角的关系,100 ,80 ,解:,B= 180 A= 180 100=80,又ADBC(平行四边形的对边平行),四边形ABCD是平行四边形,A=C=100 (平行四边形的对角相等),且A+C=200,证明:四边形ABCD是平行四边形, A= C,AD=CB. 又AED= CFB=90, ADECBF(AAS), AE=CF.,【思考】在上述证明中还能得出什么结论?,DE=BF,平行线间的距离,C,B,F,E,A,D,若m / n,作 AB / CD / EF,分别交 m于A、C、E,交 n于B、D、F.,由平行四边形的性质得AB=CD=EF.,两条平行线之间的平行线段

8、相等.,m,n,由平行四边形的定义易知四边形ABDC,CDFE均为平行四边形.,两条平行线间的距离相等.,若m / n,AB、CD、EF垂直于 n,交n于B、D、F,交 m于A、C、E.,B,F,E,A,n,m,C,D,同前面易得AB=CD=EF,两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,4.如图,ABCD,BCAB,若AB=4cm,SABC=12cm2, 求ABD中AB边上的高,解:SABC = ABBC, = 4 BC=12cm2, BC=6cm. ABCD, 点D到AB边的距离等于BC的长度, ABD中AB边上的高为6cm,1.(2018黔南州)如图在ABC

9、D中,已知AC=4cm,若ACD的周长为13cm,则ABCD的周长为( ) A26cm B24cm C20cm D18cm,巩固练习,D,2.(2019福建)在平面直角坐标系xOy中,OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是_,(1,2),D,1.在 ABCD中,A:B:C:D的值可能是( ) A1:2:3:4 B1:2:2:1 C1:1:2:2 D2:1:2:1,A,D,B,C,D,3. 在ABCD中, A=3B, 求C和D 的度数 .,解:在ABCD中, ADBC A+B= 180 又已知 A=3B 则 3B +B= 180 解得:B= 45, A=34

10、5=135 所以 C=A=135 , D=B= 45,4.如图,小明用一根48m长的绳子围成了一个平行四边形的场地,其中一条边AB长为10m,其他三条边各长多少?,解: 四边形ABCD是平行四边形 AB=CD, AD=BC AB=10m CD=10m 又AB+BC+CD+AD=48, AD=BC=14m,10m,有一块形状如图所示的玻璃,不小心把EDF部分打碎了,现在只测得AE=60cm,BC=80cm,B=60且AEBC、ABCF,你能根据测得的数据计算出DE的长度和D的度数吗?,解:AE/BC,AB/CF,,四边形ABCD是平行四边形.,D=B=60, AD=BC=80cm.,ED=AD-

11、AE=20cm.,答:DE的长度是20cm, D的度数是60.,证明: 四边形BEFM是平行四边形, BM=EF,AB/EF. AD平分BAC,BAD=CAD. AB/EF, BAD=AEF, CAD =AEF, AF=EF, AF=BM.,如图,在ABC中,AD平分BAC,点M,E,F分别AB,AD,AC上的点,四边形BEFM是平行四边形.求证:AF=BM.,平行 四边形,定义,两组对边分别平行的四边形,性质,两组对边分别平行,相等,两条平行线间的距离相等, 两条平行线间的平行线段也相等,两组对角分别相等,邻角互补,平行四边形的对角线的性质,第二课时,返回,一位饱经苍桑的老人,经过一辈子的辛

12、勤劳动, 到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的:,当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么?,老大,老二,老三,老四,2. 能综合运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.,1. 掌握平行四边形对角线互相平分的性质 .,素养目标,猜想:平行四边形的对角线互相平分,想一想,平行四边形除了边、角这两个要素的性质外,对角线有什么性质?,平行四边形对角线的性质,如图,在 ABCD中,对角线AC,BD 相交于点O, OA与OC,OB与OD有什么关系? 求证:OA=OC,

13、OB=OD,证明:四边形ABCD是平行四边形, AB=CD,ABCD; 1=2,3=4; CODAOB; OA=OC,OB=OD,证明过程,符号语言:,平行四边形的对角线互相平分., 四边形ABCD是平行四边形, OAOC,OBOD(平行四边形的对角线互相平分),或,或,AC=2AO=2CO,BD=2BO=2DO.,平行四边形的性质,解:四边形ABCD是平行四边形, OBOD,ABCD,ADBC. AOB的周长比DOA的周长长5cm,ABAD5cm. 又 ABCD的周长为60cm,ABAD30cm, 则ABCD17.5cm,ADBC12.5cm.,利用平行四边形对角线的性质求线段的值,提示:平

14、行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.,1.如图,ABCD的两条对角线相交于点O, 已知AB=8cm,BC=6cm, AOB的周长是18cm,那么AOD的周长是 .,16cm,例2 如图, ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F. 求证:OE=OF.,证明:四边形ABCD是平行四边形, ABCD,OA=OC (平行四边形的性质) EAO=FCO(两直线平行,内错角相等) 在AOE和COF中 AOE = COF对顶角相等 OA = OC EAO = FCO AOECOF ( ASA ) OE = OF (全等三角形的

15、对应边相等),请判断下列图中,OE=OF还成立吗?,同例2易证明OE=OF还成立.,归纳总结:过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等.,2. 如图,平行四边形ABCD中,AC、BD交于O点,点E、F分别是AO、CO的中点,试判断线段BE、DF的数量关系并证明你的结论,解:BEDF,BEDF. 理由如下: 四边形ABCD是平行四边形, OAOC,OBOD, 点E、F分别是AO、CO的中点 OEOF. 在OFD和OEB中, OEOF,DOFBOE,ODOB, OFDOEB, BEDF. DFOBEO. BEDF.,解:四边形ABCD是平行四边形,,根

16、据勾股定理得,BC=AD=8cm,CD=AB=10cm.,ABC是直角三角形.,又OA=OC,平行四边形的面积,ACBC,3.已知: ABCD的对角线AC、BD相交于点 O,AC =16cm,BD =12cm,BC =10cm,则ABCD 的周长是_, ABCD的面积是_.,40cm,96cm2,16,12,10,10,6,8,10,10,B,F,E,平行四边形中有关图形的面积,解:相等.理由如下: 四边形ABCD是平行四边形, OAOC,OBOD. ADO与ODC等底同高, SADO=SODC. 同理可得SADO=SODC=SBCO=SAOB.,总结:平行四边形的对角线分平行四边形为四个面积

17、相等的三角形,且都等于平行四边形面积的四分之一.相对的两个三角形全等.,方案一,方案二,方案四,方案五,方案三,方案六,总结:过对角线交点的任一条直线都将平行四边形分成面积相等的两部分,例3 如图,AC,BD交于点O,EF过点O,平行四边形ABCD被EF所分的两个四边形面积相等吗?,M,N,解:设直线EF交AD,BC于点N,M.,ADBC, NAO=MCO,ANO=CMO.,又AO=CO,NAOMCO,,S四边形ANMB=SNAO+SAOB+SMOB=SMCO+SAOB+SMOB =SAOB+SCOB= . S四边形ANMB=S四边形CMND, 即平行四边形ABCD被EF所分的两个四边形面积相

18、等.,利用平行四边形的有关图形的面积证明相等,C,如图,AC,BD交于点O,EF过点O,平行四边形ABCD被EF所分的两个四边形面积相等吗?,同例3易求得平行四边形ABCD被EF所分的两个四边形面积相等.,总结:过对角线交点的任一条直线都将平行四边形分成面积相 等的两部分.,4.如图,欢欢看到平行四边形的草地中间有一水井,为了浇水的方便,欢欢建议我们经过水井修小路,一样可以把草地分成面积相等的两部分,同学们,你知道聪明的欢欢是怎么分的吗?,O,解:如图所示,(2019柳州)如图,在ABCD中,全等三角形的对数共有( ) A2对 B3对 C4对 D5对,巩固练习,C,1.平行四边形的两条对角线把

19、它分成的四个三角形( ) A.都是等腰三角形 B.都是全等三角形 C.都是直角三角形 D.是面积相等的三角形,D,A,1AD9,4.把一个平行四边形分成3个三角形,已知两个阴影三角形的面积分别是9cm2和12cm2,求平行四边形的面积,解:(9+12)2 =212 =42(cm2) 答:平行四边形的面积是42cm2,如图,平行四边形ABCD中,DEAB于E,DFBC于F,若平行四边形ABCD的周长为48,DE=5,DF=10,求平行四边形ABCD的面积.,解:设AB=x,则BC=24-x. 根据平行四边形的面积公式可得5x=10(24-x), 解得x=16 则平行四边形ABCD的面积为516=

20、80,如图,平行四边形ABCD的对角线相交于点O,且ABAD,过O作OEBD,交BC于点E.若CDE的周长为10,则平行四边形ABCD的周长是多少?,解:四边形ABCD是平行四边形, AB=CD,BC=AD,OB=OD. OEBD,BE=DE. CDE的周长为10,DE+CE+CD=BE+CE+CD=BC+CD=10, 平行四边形ABCD的周长为2(BC+CD)=20,平行四 边形对角线的 性质,平行四边形对角线互相平分,两条对角线分平行四边形为面积相等的四个三角形,过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等.,过对角线交点的任一条直线都将平行四边形分成面积相等的两部分.且与对角线围成的三角形相对的两个全等.,课后作业,作业 内容,教材作业,从课后习题中选取,自主安排,配套练习册练习,